Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap

Abstract

In 1972, V. Keilis-Borok and I. Gelfand introduced the phenomenological approach based on the morphostructural zoning and pattern recognition for identification of earthquake-prone areas. This methodology identifies seismogenic nodes capable of generating strong earthquakes on the basis of geological, morphological, and geophysical data, which do not contain information on past seismicity. In the period 1972–2018, totally, 26 worldwide seismic regions have been studied and maps showing the recognized earthquake-prone areas in each region have been published. After that, 11 of these regions were hit by earthquakes of the relevant sizes. The goal of this work is to analyze the correlation of the post-publication events with seismogenic nodes defined in these 11 regions. The test was performed using the NEIC earthquake catalog because it uniformly defines the location and magnitudes of earthquakes over the globe. The ArcMap facilities were exploited to plot the post-publication events on the maps showing the recognized seismogenic nodes. We found that about 86% of such events fall in the recognized seismogenic nodes. The performed test proved the sufficient validity of the methodology for identifying areas capable of strong earthquakes and confirms the idea on nucleating strong earthquakes at the nodes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res 84:6140–6148

    Article  Google Scholar 

  2. Alexeevskaya MA, Gabrielov AM, Gvishiani AD, Gelfand IM, Rantsman E Ya (1977) Formal morphostructural zoning of mountain territories. J Geophys 43:227–233

    Google Scholar 

  3. Barenblatt GI (1993) Micromechanics of fracture. In: Bodner ER, Singer J, Solan A, Hashin Z (eds) Theoretical and applied mechanics. Elsevier, Amsterdam, pp 25–52

    Google Scholar 

  4. Bhatia SC, Chetty TRK, Filimonov M, Gorshkov A, Rantsman E, Rao MN (1992) Identification of potential areas for the occurrence of strong earthquakes in Himalayan arc region. Proc Indian Acad Sci (Earth Planet Sci) 101(4):369–385

    Google Scholar 

  5. Bongard MM (1967) Problema uznavaniya (Problem of recognition). Nauka, Moscow (in Russian)

    Google Scholar 

  6. Caputo M, Keilis-Borok V, Oficerova E, Ranzman E, Rotwain I, Solovjeff A (1980) Pattern recognition of earthquake prone areas in Italy. Phys Earth Planet Int 21:305–320

    Article  Google Scholar 

  7. Chunga K, Michetti A, Gorshkov A, Panza G, Soloviev A, Martillo C (2010) Identificacion de nudos sismogenicos capaces de generar potenciales terremotos de M > 6 y M > 6.5 en la Región costera y cadenas montanosas de los Andes Septentrionales del Ecuador. Revista ESPOL RTE 23(3):61–89

    Google Scholar 

  8. Cisternas A, Godefroy P, Gvishiani A, Gorshkov A, Kossobokov V, Lambert M, Rantsman E, Sallantin J, Saldano H, Soloviev A, Weber C (1985) A dual approach to recognition of earthquake prone-areas in the Western Alps. Ann Geophys 3(2):249–270

    Google Scholar 

  9. Das S, Aki K (1977) Fault planes with barriers: a versatile earthquake model. J Geophys Res 82:5648–5670

    Article  Google Scholar 

  10. Gelfand IM, Guberman S, Izvekova M, Keilis-Borok VI, Rantsman E Ya (1972) Criteria of high seismicity determined by pattern recognition. Tectonophysics 13(1–4):415–422

    Article  Google Scholar 

  11. Gelfand IM, Guberman SA, Zhidkov MP, Keilis-Borok VI, Ranzman EY, Rotwain IM (1974) Recog_nition of earthquake_prone areas. II. Four regions in Asia Minor and South_East Europe. In: Keilis-Borok VI (ed) Vychislitel’naya seis_mologiya, Vyp. 7: Mashinnyi analiz tsifrovykh seismicheskikh dannykh (Computational Seismology, vol 7: Computerized Analysis of Digital Seismic Data). Nauka, Moscow, pp 3–40

  12. Gelfand IM, Guberman S, Keilis-Borok VI, Knopoff L, Press F, Ranzman I Ya, Rotwain IM, Sadovsky AM (1976) Pattern recognition applied to earthquake epicenters in California. Phys Earth Planet Int 11:227–283

    Article  Google Scholar 

  13. Giardini D, Grünthal G, Shedlock KM, Zhang P (1999) The GSHAP global seismic hazard map. Ann Geophys 42(6):1225–1228

    Google Scholar 

  14. Gorshkov AI, Gaudemer Y (2012) Identification of seismogenic nodes in an area of low seismicity (case of the Massif Central, France). Book of Abstracts of the 33rd General Assembly of the European Seismological Commission. 19–24 August 2012. Moscow, Russia, 380 pp

  15. Gorshkov AI, Zhidkov MP, Ranzman E Ya, Tumarkin AG (1991) Morphostructure of Lesser Caucasus and locations of the earthquakes, M ≥ 5.5. Izv Akad Nauk SSSR Fiz Zemli 6:30–38

    Google Scholar 

  16. Gorshkov A, Kuznetsov I, Panza G, Soloviev A (2000) Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria. PAGEOPH 157:79–95

    Article  Google Scholar 

  17. Gorshkov AI, Kossobokov VG, Rantsman EY, Soloviev AA (2005) Recognition of earthquake-prone areas: validity of results obtained from 1972 to 2000. In: Chowdhury DK (ed) Computational seismology and geodynamics, vol 7. AGU, Washington, pp 37–44

    Google Scholar 

  18. Gorshkov AI, Panza GF, Soloviev AA, Aoudia A (2002) Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily. JSEE 4(1):1–24

    Google Scholar 

  19. Gorshkov AI, Kossobokov V, Soloviev AA (2003) Recognition of earthquake prone areas. In: Keilis-Bork V, Soloviev AA (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Heidelberg, pp 235–320

    Google Scholar 

  20. Gorshkov AI, Panza GF, Soloviev AA, Aoudia A (2004) Identification of seismogenic nodes in the Alps and Dinarides. Bolletino della Societa Geologica Italiana 123:3–18

    Google Scholar 

  21. Gorshkov A, Mokhtari M, Piotrovskaya E (2009a) The Alborz region: identification of seismogenic nodes with morphostructural zoning and pattern recognition. JSEE 1(1):1–15

    Google Scholar 

  22. Gorshkov AI, Panza GF, Soloviev AA, Aoudia A, Peresan A (2009b) Delineation of the geometry of the nodes in the Alps-Dinarides hinge zone and recognition of seismogenic nodes (M ≥ 6.0). Terra. https://doi.org/10.1111/j.1365-3121.2009.00879.x

    Article  Google Scholar 

  23. Gorshkov AI, Soloviev AA, Jiménez MJ, García-Fernández M, Panza GF (2010) Recognition of earthquake-prone areas (M ≥ 5.0) in the Iberian Peninsula. Rendiconti Lincei Scienze Fisiche e Naturali 21(2):131–162. https://doi.org/10.1007/s12210-010-0075-3

    Article  Google Scholar 

  24. Gorshkov A, Parvez Y, Novikova O (2012) Recognition of earthquake-prone areas in the Himalaya: validity of the results. Int J Geophys, Article ID 419143, 5 pp. https://doi.org/10.1155/2012/419143

    Article  Google Scholar 

  25. Gorshkov A, Hassan HM, Novikova O (2016) Seismogenic nodes defined in north-east Egypt by the pattern recognition approach. 35th General Assembly of the European Seismological Commission. September 2016, Trieste, Italy. http://meetingorganizer.copernicus.org/ESC2016/oral_program/22633

  26. Gorshkov AI, Soloviev AA, Zharkikh Y (2017) A morphostructural zoning of the Mountainous Crimea and the possible locations of future earthquakes. J Volcanol Seismolog 11(6):407–412. https://doi.org/10.1134/S0742046317060021

    Article  Google Scholar 

  27. Gorshkov AI, Soloviev AA, Zharkikh JI (2018) Recognition of strong earthquake prone areas in the Altai–Sayan–Baikal Region. Dokl Earth Sci 479(Part 1):412–414. https://doi.org/10.1134/S1028334X1803025X

    Article  Google Scholar 

  28. Gvishiani AD, Soloviev AA (1984) Recognition of places on the Pacific coast of the South America where strong earthquakes May Occur. Earthq Predict Res 2(4):237–243

    Google Scholar 

  29. Gvishiani AD, Zhidkov MP, Soloviev AA (1984) On application of the criteria of high seismicity of Andean mountain belt to Kamchatka. Izv Akad Nauk SSSR Fiz Zemli 1:20–33

    Google Scholar 

  30. Gvishiani A, Gorshkov A, Kossobokov V, Cisternas A, Philip H, Weber C (1987) Identification of seismically dangerous zones in the Pyrenees. Ann Geophys 5B(6):681–690

    Google Scholar 

  31. Gvishiani A, Gorshkov A, Rantsman E, Cisternas A, Soloviev A (1988) Identification of earthquake-prone-areas in the regions of moderate seismicity. Nauka, Moscow, 175 pp (in Russian)

  32. Novikova O, Gorshkov A (2013) Recognition of earthquake prone areas (M ≥ 6.0) in the Kopet Dagh region using the GIS technology. J Seismol Earthq Eng (JESS) 15(2):91–99

    Google Scholar 

  33. Novikova O, Gorshkov A (2016) Seismogenic nodes defined by pattern recognition in the central part of the Alpine-Himalayan belt. Bull Geol Soc Greece L(3), 1426–1432. Proceedings of the 14th International Congress, Thessaloniki, 25–27 May 2016

    Article  Google Scholar 

  34. Peresan A, Gorshkov A, Soloviev A, Panza GF (2014) The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata 56(2):324–345. https://doi.org/10.4430/bgta0141

    Article  Google Scholar 

  35. Rantsman E Ya (1979) Morphostructure of mountain regions and sites of earthquakes. Nauka, Moscow (in Russian)

    Google Scholar 

  36. Sibson RH (1988) Earthquake faulting, induced fluid flow, and fault-hosted gold-quartz mineralization. In: Bartholomew MJ, Hyndman DW, Mogk DW, Mason R (eds) Basement tectonics: characterization and comparison of ancient and Mesozoic continental margins. Proc. 8th Int. Conf. Basement Tectonics, Butte, MT, pp 603–614

    Google Scholar 

  37. Soloviev AA, Novikova OV, Gorshkov AI, Piotrovskaya EP (2013) Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies. Dokl Earth Sci 450(2):658–660. https://doi.org/10.1134/s1028334x13060159

    Article  Google Scholar 

  38. Soloviev AA, Gvishiani AD, Gorshkov AI, Dobrovolsky MN, Novikova OV (2014) Recognition of earthquake-prone areas: methodology and analysis of the results. Izv Phys Solid Earth 50(2):151–168. https://doi.org/10.1134/S1069351314020116

    Article  Google Scholar 

  39. Talwani P (1999) Fault geometry and earthquakes in continental interiors. Tectonophysics 305:371–379

    Article  Google Scholar 

  40. Tuyen NH, Gorshkov AI, Lu NT (2012) Recognition of earthquake-prone area (M ≥ 5.0) applied for North Vietnam and Adjacency. J Earth Sci 34(3):251–265

    Google Scholar 

  41. Weber C, Gvishiani A, Gorshkov A, Godfrya P, Kossobokov V, Lambert M, Rantsman E, Sallanten J, Soldano A, Cisternas A, Soloviev A (1987) Recognition of places of possible occurrence of strong earthquake. XII. Two approaches to predicting places of possible occurrence of strong earthquakes in the Western Alps. In: Computational seismology: theory and analysis of seismological information, vol 18. Allerton Press Inc, New York, pp 128–143

    Google Scholar 

  42. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  43. Wyss M, Nekrasova A, Kossobokov V (2012) Errors in expected human losses due to incorrect seismic hazard estimates. Nat Hazards 62(3):927–935. https://doi.org/10.1007/s11069-012-0125-5

    Article  Google Scholar 

Download references

Acknowledgements

The study was partly funded by Russian Foundation of Basic Research (RFBR) according to the research Project 16-55-12033. We address our special thanks to Prof. V. Kocobokov, Dr. D. Vamvakaris, and one anonymous reviewer for their useful comments and remarks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Novikova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorshkov, A., Novikova, O. Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap. Acta Geophys. 66, 843–853 (2018). https://doi.org/10.1007/s11600-018-0177-3

Download citation

Keywords

  • Morphostructural zoning
  • Pattern recognition
  • Seismogenic nodes
  • ArcMap