Acta Geophysica

, Volume 66, Issue 3, pp 405–414 | Cite as

Analysis of synoptic patterns in relationship with severe rainfall events in the Ebre Observatory (Catalonia)

  • Núria Pérez-Zanón
  • M. Carmen Casas-Castillo
  • Juan Carlos Peña
  • Montserrat Aran
  • Raúl Rodríguez-Solà
  • Angel Redaño
  • German Solé
Research Article - Special Issue

Abstract

The study has obtained a classification of the synoptic patterns associated with a selection of extreme rain episodes registered in the Ebre Observatory between 1905 and 2003, showing a return period of not less than 10 years for any duration from 5 min to 24 h. These episodes had been previously classified in four rainfall intensity groups attending to their meteorological time scale. The synoptic patterns related to every group have been obtained applying a multivariable analysis to three atmospheric levels: sea-level pressure, temperature, and geopotential at 500 hPa. Usually, the synoptic patterns associated with intense rain in southern Catalonia are featured by low-pressure systems advecting warm and wet air from the Mediterranean Sea at the low levels of the troposphere. The configuration in the middle levels of the troposphere is dominated by negative anomalies of geopotential, indicating the presence of a low or a cold front, and temperature anomalies, promoting the destabilization of the atmosphere. These configurations promote the occurrence of severe convective events due to the difference of temperature between the low and medium levels of troposphere and the contribution of humidity in the lowest levels of the atmosphere.

Keywords

Synoptic patterns Severe rainfall Southern Catalonia Meteorological temporal scales Intensity weighted index Multivariate analysis 

Notes

Acknowledgements

We are grateful to the Meteorological Service of Catalonia, the Ebre Observatory, the DOE INCITE project, BER and NOAA.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. Aran M, Peña JC, Torà M (2011) Atmospheric circulation patterns associated with hail events in Lleida (Catalonia). Atmos Res 100(4):428–438.  https://doi.org/10.1016/j.atmosres.2010.10.029 CrossRefGoogle Scholar
  2. Beguería S, Angulo-Martínez M, Vicente-Serrano SM, López-Moreno JL, El-Kenawy A (2011) Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. Int J Climatol 31:2102–2114.  https://doi.org/10.1002/joc.2218 CrossRefGoogle Scholar
  3. Casas MC, Codina B, Redaño A, Lorente J (2004) A methodology to classify extreme rainfall events in the western Mediterranean area. Theor Appl Climatol 77:139–150.  https://doi.org/10.1007/s00704-003-0003-x CrossRefGoogle Scholar
  4. Casas MC, Rodríguez R, Redaño A (2010) Analysis of extreme rainfall in Barcelona using a microscale rain gauge network. Meteorol Appl 17:117–123.  https://doi.org/10.1002/met.166 Google Scholar
  5. Cattell RB (1966) The scree test for the number of the factors. Multivar Behav Res 1:245–276CrossRefGoogle Scholar
  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28.  https://doi.org/10.1002/qj.776 CrossRefGoogle Scholar
  7. Debatty T, Michiardi P, Mees W, Thonnard O (2014) Determining the k in k-means with MapReduce. EDBT/ICDT Workshops, pp 19–28Google Scholar
  8. Diab RD, Preston-Whyte RA, Washington R (1991) Distribution of rainfall by synoptic type over Natal, South Africa. Int J Climatol 11(8):877–888CrossRefGoogle Scholar
  9. Fernandez GC (2002) Discriminant analysis, a powerful classification technique in data mining. In: Proceedings of the SAS users international conference, pp 247–256Google Scholar
  10. Houssos EE, Lolis CJ, Bartzokas A (2008) Atmospheric circulation patterns associated with extreme precipitation amounts in Greece. Adv Geosci 6:5–11.  https://doi.org/10.5194/adgeo-17-5-2008 CrossRefGoogle Scholar
  11. Huth R (1996) Properties of the circulation classification scheme based on the rotated principal component analysis. Meteorol Atmos Phys 59:217–233CrossRefGoogle Scholar
  12. Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito OE (2008) Classifications of atmospheric circulation patterns. Recent advances and applications. trends and directions in climate research. Ann N Y Acad Sci 1146:105–152.  https://doi.org/10.1196/annals.1446.019 CrossRefGoogle Scholar
  13. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31(8):651–666.  https://doi.org/10.1016/j.patrec.2009.09.011 CrossRefGoogle Scholar
  14. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–472. https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2Google Scholar
  15. Llasat MC, Llasat-Botija M, Petrucci O, Pasqua AA, Rossello J, Vinet F, Boissier L (2013) Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Nat Hazards Earth Syst Sci 13(5):1337–1350.  https://doi.org/10.5194/nhess-13-1337-013 CrossRefGoogle Scholar
  16. Lorente J, Redaño A (1990) Rainfall rate distribution in a local scale: the case of Barcelona City. Theor Appl Climatol 41:23–32.  https://doi.org/10.1007/BF00866199 CrossRefGoogle Scholar
  17. MAGRAMA (2015) Ministerio de Agricultura, Alimentación y Medio Ambiente: Anuario de aforos. http://sig.magrama.es/aforos/visor.html. Accessed: 18 Nov 2015
  18. Martín-Vide J, Sánchez-Lorenzo A, López-Bustins JA, Cordobilla MJ, García-Manuel A, Raso JM (2008) Torrential rainfall in northeast of the Iberian Peninsula: synoptic patterns and WeMO influence. Adv Sci Res 2:99–105CrossRefGoogle Scholar
  19. Martínez C, Campins J, Jansà A, Genovès A (2008) Heavy rain events in the Western Mediterranean: an atmospheric pattern classification. Adv Sci Res 2:61–64.  https://doi.org/10.5194/asr-2-61-2008 CrossRefGoogle Scholar
  20. Mazon J, Balasch JC, Barriendos M, Ruiz-Bellet JL, Pino D, Tuset J (2014) Meteorological reconstruction of major floods in early instrumental period in Catalonia (NE Iberian Peninsula). In: EMS annual meeting abstracts, 11, EMS2014–141Google Scholar
  21. Merino A, Fernández-González S, García-Ortega E, Sánchez JL, López L, Gascón E (2017) Temporal continuity of extreme precipitation events using sub-daily precipitation: application to floods in the Ebro basin, northeastern Spain. Int J Climatol.  https://doi.org/10.1002/joc.5302 Google Scholar
  22. Michailidou C, Maheras P, Arseni-Papadimititriou A, Kolyva-Machera F, Anagnostopoulou C (2009) A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis. Theor Appl Climatol 97(1–2):179–194CrossRefGoogle Scholar
  23. Peña JC, Aran M, Cunillera J, Amaro J (2011) Atmospheric circulation patterns associated with strong wind events in Catalonia. Nat Hazards Earth Syst Sci 11:145–155.  https://doi.org/10.5194/nhess-11-145-2011 CrossRefGoogle Scholar
  24. Peña JC, Schulte L, Badoux A, Barriendos M, Barrera-Escoda A (2015) Influence of solar forcing, climate variability and atmospheric circulation patterns on summer floods in Switzerland. Hydrol Earth Syst Sci Discuss 11:13843–13890.  https://doi.org/10.5194/hessd-11-13843-2014 CrossRefGoogle Scholar
  25. Pérez-Zanón N, Casas-Castillo MC, Rodríguez-Solà R, Peña JC, Rius A, Solé JG, Redaño A (2015) Analysis of extreme rainfall in the Ebre Observatory (Spain). Theor Appl Climatol 124(3–4):935–944.  https://doi.org/10.1007/s00704-015-1476-0 Google Scholar
  26. Pino D, Ruiz-Bellet JL, Balasch JC, Romero-León L, Tuset J, Barriendos M, Mazon J, Castelltort X (2016) Meteorological and hydrological analysis of major floods in NE Iberian Peninsula. J Hydrol 541:63–89.  https://doi.org/10.1016/j.jhydrol.2016.02.008 CrossRefGoogle Scholar
  27. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335CrossRefGoogle Scholar
  28. Rodríguez-Solà R, Casas-Castillo MC, Navarro X, Redaño A (2017) A study of the scaling properties of rainfall in Spain and its appropriateness to generate intensity-duration-frequency curves from daily records. Int J Climatol 37(2):770–780.  https://doi.org/10.1002/joc.4738. http://hdl.handle.net/2117/87312
  29. Ruiz-Bellet JL, Balasch JC, Tuset J, Monserrate A, Sánchez A (2015) Improvement of flood frequency analysis with historical information in different types of catchments and data series within the Ebro River basin (NE Iberian Peninsula). Z Geomorphol Suppl Issues 59(3):127–157.  https://doi.org/10.1127/zfg_suppl/2015/S-59219 CrossRefGoogle Scholar
  30. Sioutas MV, Flocas HA (2003) Hailstorms in Northern Greece: synoptic patterns and thermodynamic environment. Theor Appl Climatol 75:189–202CrossRefGoogle Scholar
  31. Thorndike RL (1953) Who belongs in the family? Psychometrika 18(4):267–276CrossRefGoogle Scholar
  32. Thunis P, Bornstein R (1996) Hierarchy of mesoscale flow assumptions and equations. J Atmos Sci 53(3):380–397.  https://doi.org/10.1175/1520-0469(1996)053 CrossRefGoogle Scholar
  33. Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser B (Stat Methodol) 63(2):411–423CrossRefGoogle Scholar
  34. Vicente-Serrano SM, Beguería S, López-Moreno JI, El Kenawy AM, Angulo M (2009) Daily atmospheric circulation events and extreme precipitation risk in the Northeast Spain: the role of the North Atlantic Oscillation, Western Mediterranean Oscillation, and Mediterranean Oscillation. J Geophys Res 114:DO8166.  https://doi.org/10.1029/2008JD011492 CrossRefGoogle Scholar
  35. Zhang Y, Moges S, Block P (2016) Optimal cluster analysis for objective regionalization of seasonal precipitation in regions of high spatial–temporal variability: application to Western Ethiopia. J Clim 29:3697–3717.  https://doi.org/10.1175/JCLI-D-15-0582.1 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Centre for Climate Change (C3), Department of GeographyUniversity Rovira i VirgiliVila-secaSpain
  2. 2.Departament de FísicaESEIAAT, Universitat Politècnica de Catalunya · BarcelonaTech (UPC)TerrassaSpain
  3. 3.Servei Meteorològic de CatalunyaBarcelonaSpain
  4. 4.Departament de FísicaETSEIB, Universitat Politècnica de Catalunya · BarcelonaTech (UPC)BarcelonaSpain
  5. 5.Departament de Física Aplicada, Facultat de FísicaUniversitat de Barcelona (UB)BarcelonaSpain
  6. 6.Observatori de l’EbreRoquetesSpain

Personalised recommendations