Acta Geophysica

, Volume 66, Issue 3, pp 415–424 | Cite as

A single scaling parameter as a first approximation to describe the rainfall pattern of a place: application on Catalonia

  • M. Carmen Casas-CastilloEmail author
  • Alba Llabrés-Brustenga
  • Anna Rius
  • Raúl Rodríguez-Solà
  • Xavier Navarro
Research Article - Special Issue


As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity–duration–frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.


Simple scaling Fractal analysis Rainfall intensity Intensity–duration–frequency curves Climate change Catalonia 



We gratefully acknowledge to Servei Meteorològic de Catalunya (Generalitat de Catalunya) and Observatori de l’Ebre for providing the data analyzed in this work. We are also grateful to the anonymous referees for their useful suggestions.

Compliance with ethical standards

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Aronica GT, Freni G (2005) Estimation of sub-hourly DDF curves using scaling properties of hourly and sub-hourly data at partially gauged site. Atmos Res 77(1–4):114–123. CrossRefGoogle Scholar
  2. Bara M, Kohnová S, Gaál L, Szolgay J, Hlavčová K (2009) Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia. Contrib Geophys Geod 39(3):187–206Google Scholar
  3. Bara M, Gaál L, Kohnová S, Szolgay J, Hlavčová K (2010) On the use of the simple scaling of heavy rainfall in a regional estimation of IDF curves in Slovakia. J Hydrol Hydromech 58(1):49–63. CrossRefGoogle Scholar
  4. Bell FC (1969) Generalised rainfall–duration–frequency relationships. J Hydraul Division ASCE 95(1):311–327Google Scholar
  5. Buonomo E, Jones E, Huntingford C, Hammaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Quart J R Meteorol Soc 133:65–81. CrossRefGoogle Scholar
  6. Burlando P, Rosso R (1996) Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J Hydrol 187:45–64. CrossRefGoogle Scholar
  7. Casas MC, Codina B, Redaño A, Lorente J (2004) A methodology to classify extreme rainfall events in the western Mediterranean area. Theoret Appl Climatol 77:139–150. CrossRefGoogle Scholar
  8. Casas-Castillo MC, Rodríguez-Solà R, Navarro X, Russo B, Lastra A, González P, Redaño A (2018) On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates. Theor Appl Climatol 131(1):573–580. Google Scholar
  9. Christensen JH, Christensen OB (2003) Severe summertime flooding in Europe. Nature 421:805–806. CrossRefGoogle Scholar
  10. Desramaut N (2008) Estimation of intensity Duration Frequency Curves for Current and Future Climates [Thesis of Master], Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec (Canada).
  11. Esteban P, Prohom M, Aguilar E (2013) Tendencias recientes e índices de cambio climático de la temperatura y la precipitación en Andorra, Pirineos (1935-2008). Pirineos. Revista de ecología de montaña 167:89–108. Google Scholar
  12. Ferreri G, Ferro V (1990) Short-duration rainfalls in Sicily. J Hydraulic Eng ASCE 116(3):430–435. CrossRefGoogle Scholar
  13. Gupta VK, Waymire E (1990) Multiscaling properties of spatial rainfall and river flow distributions. J Geophys Res 95(D3):1999–2009. CrossRefGoogle Scholar
  14. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95. CrossRefGoogle Scholar
  15. Kendall MG (1975) Rank correlation methods. Charles Griffin, London, p 6Google Scholar
  16. Koutsoyiannis D, Foufoula-Georgiou E (1993) A scaling model of storm hyetograph. Water Resour Res 29(7):2345–2361. CrossRefGoogle Scholar
  17. Koutsoyiannis D, Kozonis D, Manetas A (1998) A mathematical framework for studying rainfall intensity-duration-frequency relationships. J Hydrol 206(1–2):118–135. CrossRefGoogle Scholar
  18. Mann HB (1945) Nonparametric tests against trend. Econometrika 13:245–259CrossRefGoogle Scholar
  19. Menabde M, Seed A, Pegram G (1999) A simple scaling model for extreme rainfall. Water Resour Res 35(1):335–339. CrossRefGoogle Scholar
  20. Pérez FF, Boscolo R (2010) Clima en España: Pasado, presente y futuro. Informe de Evaluación del Cambio climático Regional. Red Temática CLIVAR-España.
  21. Pérez-Zanón N, Casas-Castillo MC, Rodríguez-Solà R, Peña JC, Rius A, Solé JG, Redaño A (2015) Analysis of extreme rainfall in the Ebre Observatory (Spain). Theor Appl Climatol 124(3–4):935–944. Google Scholar
  22. Rodríguez R, Navarro X, Casas MC, Ribalaygua J, Russo B, Pouget L, Redaño A (2014) Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int J Climatol 34:643–654. CrossRefGoogle Scholar
  23. Rodríguez-Solà R, Casas-Castillo MC, Navarro X, Redaño A (2017) A study of the scaling properties of rainfall in Spain and its appropriateness to generate intensity-duration-frequency curves from daily records. Int J Climatol 37(2):770–780. CrossRefGoogle Scholar
  24. Schertzer D, Lovejoy S (1987) Physical modelling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92(D8):9693–9714. CrossRefGoogle Scholar
  25. Schertzer D, Lovejoy S (2011) Multifractals, generalized scale invariance and complexity in geophysics. Int J Bifurc Chaos 21(12):3417–3456. CrossRefGoogle Scholar
  26. Servei Meteorològic de Catalunya (2017) Butlletí Anual d’Indicadors Climàtics 2016. Departament de Territori i Sostenibilitat. Generalitat de Catalunya.
  27. Yu PS, Yang TC, Lin CS (2004) Regional rainfall intensity formulas based on scaling property of rainfall. J Hydrol 295(1–4):108–123. CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Physics, ESEIAATUniversitat Politècnica de Catalunya · BarcelonaTech (UPC)TerrassaSpain
  2. 2.Servei Meteorològic de CatalunyaBarcelonaSpain
  3. 3.Department of Physics, ETSEIBUniversitat Politècnica de Catalunya · BarcelonaTech (UPC)BarcelonaSpain
  4. 4.Department of Physics, EPSEVGUniversitat Politècnica de Catalunya · BarcelonaTech (UPC)Vilanova i la GeltrúSpain

Personalised recommendations