Skip to main content
Log in

Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain)

  • Research Article - Special Issue
  • Published:
Acta Geophysica Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2018

This article has been updated

Abstract

The increase of air surface temperature at global scale is a fact with values around 0.85 °C since the late nineteen century. Nevertheless, the increase is not equally distributed all over the world, varying from one region to others. Thus, it becomes interesting to study the evolution of temperature indices for a certain area in order to analyse the existence of climatic trend in it. In this work, monthly temperature time series from two Mediterranean areas are used: the Umbria region in Italy, and the Guadalquivir Valley in southern Spain. For the available stations, six temperature indices (three annual and three monthly) of mean, average maximum and average minimum temperature have been obtained, and the existence of trends has been studied by applying the non-parametric Mann–Kendall test. Both regions show a general increase in all temperature indices, being the pattern of the trends clearer in Spain than in Italy. The Italian area is the only one at which some negative trends are detected. The presence of break points in the temperature series has been also studied by using the non-parametric Pettit test and the parametric standard normal homogeneity test (SNHT), most of which may be due to natural phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 13 April 2018

    In the original authors list there was a mistake with the surname of Professor Alessia Flammini. The corrected authors list is:

References

  • Aguilar E, Auer I, Brunet M, Peterson TC, Wieringa J (2003) Guidelines in climate metadata and homogenization. WCDMP No. 53, WMO-TD No. 1186. WMO. Geneva. Switzerland

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6:661–675

    Article  Google Scholar 

  • Brunet M, Sigro J, Saladie O, Aguilar E, Jones P, Moberg A, Walther A, Lopez D (2005) Spatial patterns of long-term Spanish temperature change. Geophys Res Abstr 7:04007

    Google Scholar 

  • Brunet M, Saladie O, Jones PD, Sigro J, Aguilar E, Moberg A, Lister DH, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802

    Article  Google Scholar 

  • Brunet M, Jones P, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, Lopez D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Nanni T (2000a) Variations of temperature and precipitation in Italy from 1866 to 1995. Theor Appl Climatol 65:165–174

    Article  Google Scholar 

  • Brunetti M, Buffoni L, Maugeri M, Nanni T (2000b) Trends of minimum and maximum daily temperatures in Italy from 1865 to 1996. Theor Appl Climatol 66:49–60

    Article  Google Scholar 

  • Brunetti M, Maugeri M, Monti F, Nannia T (2006) Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int J Climatol 26:345–381

    Article  Google Scholar 

  • Caloiero T, Coscarelli R, Ferraric E, Sirangelod B (2017) Trend analysis of monthly mean values and extreme indices of daily temperature in a region of southern Italy. Int J Climatol. https://doi.org/10.1002/joc.5003

    Google Scholar 

  • del Río S, Herreo L, Pinto-Gomes C, Penas A (2011) Spatial analyses of mean temperature trends in Spain over the period 1961–2006. Glob Planet Change 78:65–75

    Article  Google Scholar 

  • del Río S, Cano-Ortiz A, Herrero L, Penas A (2012) Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor Appl Climatol 109:605–626

    Article  Google Scholar 

  • Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods in low flows in the United States: impact of spatial correlation. J Hydrol 240:90–105

    Article  Google Scholar 

  • Feidas H (2016) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013. Theor Appl Climat. https://doi.org/10.1007/s00704-016-1854-2

    Google Scholar 

  • Gonzalez-Hidalgo JC, Peña-Angulo D, Brunetti M, Cortesi C (2015) MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). Int J Climatol 35:4444–4463

    Article  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363

    Article  Google Scholar 

  • Hu Y, Maskey S, Uhlenbrook S (2012) Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim Change 110:403–429

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Fifth Assessment report, Ginebra, Suiza

    Google Scholar 

  • Jung IW, Baeand DH, Kim G (2011) Recent trends of mean and extreme precipitation in Korea. Int J Climatol 31:359–370

    Article  Google Scholar 

  • Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Ed, Charles Griffin, London

  • Khaliq MN, Ouarda TBMJ (2007) Short Communication on the critical values of the standard normal homogeneity test (SNHT). Int J Climatol 27:681–687

    Article  Google Scholar 

  • Klok EJ, Klein-Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191

    Article  Google Scholar 

  • Llorente M (2012) Tendencias españolas de variables agrometeorológicas en los últimos 30 años. Departamento de Producción Vegetal, Universidad Politécnica de Madrid, ETSIA, p 99

  • Mann HB (1945) Non parametric test against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Martínez MD, Serra C, Burgueño A, Lana X (2010) Time trends of daily maximum and minimum temperatures in Catalonia (NE Spain) for the period 1975–2004. Int J Climatol 30:267–290

    Article  Google Scholar 

  • Morales CG, Ortega MT, Labajo JL, Piorno A (2005) Recent trends and temporal behavior of thermal variables in the region of Castilla–Leon (Spain). Atmosfera 18:71–90

    Google Scholar 

  • Morozova AL, Valente MA (2012) Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth Syst Sci Data 4:187–213

    Article  Google Scholar 

  • Pandžić K, Likso T (2010) Homogeneity of average air temperature time series for Croatia. Int J Climatol 30:1215–1225

    Google Scholar 

  • Pettit AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Piccarreta M, Lazzari M, Pasini A (2015) Trends in daily temperature extremes over the Basilicata region (southern Italy) from 1951 to 2010 in a Mediterranean climatic context. Int J Climatol 35:1964–1975

    Article  Google Scholar 

  • Rougé C, Ge Y, Cai X (2013) Detecting gradual abrupt changes in hydrological records. Adv Water Resour 53:33–44

    Article  Google Scholar 

  • Shadmani M, Marofiand S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests in Arid Regions of Iran. Water Resour Manage 26:211–224

    Article  Google Scholar 

  • Sousa A, García-Barrón L, Jurado V (2007) Climate change in Andalusia: trends and environmental consecuences. Consejería de Medio Ambiente. Junta de Andalucía

  • Tank AMGK, Könnem GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Tomozeiu R, Pavan V, Cacciamani C, Amici M (2006) Observed temperature changes in Emilia-Romagna: mean values and extremes. Clim Res 31(2–3):217–225

    Article  Google Scholar 

  • Viola F, Liuzzo L, Noto LV, Lo Conti F, La Loggia G (2014) Spatial distribution of temperature trends in Sicily. Int J Climatol 34:1–17

    Article  Google Scholar 

  • Wijngaard JB, Klein Tank AMG, Konnen GP (2003) Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol 23:679–692

    Article  Google Scholar 

  • Yu YS, Zou S, Whittemore D (1993) Nonparametric trend analysis of water quality data of rivers in Kansas. J Hydrol 150:61–80

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Processes 16:1807–1829

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the kindness and help of Jose Carlos González-Hidalgo with providing the temperature data of the Guadalquivir Valley stations from the database MOTEDAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda García-Marín.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Grimaldi, P., García-Marín, A., Ayuso-Muñoz, J.L. et al. Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain). Acta Geophys. 66, 329–343 (2018). https://doi.org/10.1007/s11600-018-0118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0118-1

Keywords

Navigation