Skip to main content

Advertisement

Log in

Evaluation of evolutionary algorithms for the optimization of storm water drainage network for an urbanized area

  • Research Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The studies pertaining to urban storm water drainage system have picked up importance lately in light of pluvial flooding. The flooding is mostly due to urban expansion, reduction in infiltration rate and environmental change. In order to minimize flooding, hydrologists are using conceptual rainfall–runoff models as a tool for predicting surface runoff and flood forecasting. Manual calibration is often a tedious process because of the involved subjectivity, which makes the automatic approach more preferable. In this study, three evolutionary algorithms (EAs), namely SFLA, GA and PSO, were used to calibrate SWMM parameters for the two study areas of the highly urbanized catchments of Delhi, India. The work incorporates auto-tuning of a widely used SWMM, via internal coupling of SWMM with all three EAs in MATLAB environment separately. Results were tested using statistical parameters, i.e., Nash–Sutcliffe efficiency (NSE), Percent Bias (PBIAS) and root-mean-square error–observations standard deviation ratio (RSR). GA results were in good agreement with the observed data in both the study area with NSE and PBIAS values lying between 0.60 and 0.91, and 1.29 and 7.41%, respectively. Also, RSR value was near zero, indicating reasonably good model performance. Subsequently, the model reasonably predicted the flooding hotspots that should be controlled to prevent any possible inundation of the surrounding areas. SFLA results were also promising, but better than PSO. Thus, the approach has demonstrated the potential use and combination of single-objective optimization algorithms and hydrodynamic models for assessing the risk in urban storm water drainage systems, providing valuable information for decision-makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alghazi A, Selim SZ, Elazouni A (2012) Performance of shuffled frog-leaping algorithm in finance-based scheduling. J Comput Civ Eng ASCE 26:396–408. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000157

    Article  Google Scholar 

  • Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    Article  Google Scholar 

  • AlRashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput 13:913–918. https://doi.org/10.1109/TEVC.2006.880326

    Article  Google Scholar 

  • Anand J, Gosain AK, Khosa R (2018) Optimisation of multipurpose reservoir operation by coupling Soil and Water Assessment Tool (SWAT) and Genetic Algorithm for Optimal Operating Policy (Case Study: Ganga River Basin). Sustainability 10(5):1660. https://doi.org/10.3390/su10051660

    Article  Google Scholar 

  • Arabi M, Govindaraju RS, Hantush MM (2006) Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resour Res 42:1–14. https://doi.org/10.1029/2006WR004931

    Article  Google Scholar 

  • Arsenault R, Poulin A, Côté P, Brissette F (2014) Comparison of stochastic optimization algorithms in hydrological model calibration. J Hydrol Eng 19:1374–1384. https://doi.org/10.1061/(ASCE)HE.1943-5584

    Article  Google Scholar 

  • Back T, Fogel D, Michalewicz Z (2000) Handbook of evolutionary computation. IOP Publishing Ltd., Bristol

    Google Scholar 

  • Baltar AM, Fontane DG (2008) Use of multiobjective particle swarm optimization in water resources management. J Water Resour Plan Manag 134:257–265. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(257)

    Article  Google Scholar 

  • Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Barco J, Wong KM, Stenstrom MK (2008) Automatic calibration of the US EPA SWMM model for a large urban catchment. J Hydraul Eng 134(4):466–474

    Article  Google Scholar 

  • Bayer P, Finkel M (2007) Optimization of concentration control by evolution strategies: formulation, application, and assessment of remedial solutions. Water Resour Res 43:1–19. https://doi.org/10.1029/2005WR004753

    Article  Google Scholar 

  • Bekele EG, Nicklow JW (2005) Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resour Res 41:1–10. https://doi.org/10.1029/2005WR004090

    Article  Google Scholar 

  • Blasone R-S, Madsen H, Rosbjerg D (2007) Parameter estimation in distributed hydrological modelling: comparison of global and local optimisation techniques. Nord Hydrol 38:451. https://doi.org/10.2166/nh.2007.024

    Article  Google Scholar 

  • Burian SJ, McPherson TN, Brown MJ, Turin HJ (2000) Development of a stormwater model for the Ballona Creek watershed. Los Alamos Unclassified Rep. (LA-UR-00-1849) Los Alamos National Laboratory, Presented at 1st Ballona Wetlands Symp., Los Angeles, CA

  • Cembrowicz RG (1994) Evolution strategies and genetic algorithms in water supply and waste water systems design. In: Blain WR et al (eds) Proceedings of water resources and distribution, Comp. Mechanics, Southampton, UK, pp 27–39

  • Chau KW (2006) Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J Hydrol 329:363–367. https://doi.org/10.1016/j.jhydrol.2006.02.025

    Article  Google Scholar 

  • Chen R-S, Pi L-C, Hsieh C-C (2005) Application of parameter optimization method for calibrating tank model. J Am Water Resour Assoc 41:389–402. https://doi.org/10.1111/j.1752-1688.2005.tb03743.x

    Article  Google Scholar 

  • Choi KS, Ball JE (2002) Parameter estimation for urban runoff modelling. Urban Water 4(1):31–41

    Article  Google Scholar 

  • Cooper VA, Nguyen VTV, Nicell JA (1997) Evaluation of global optimization methods for conceptual rainfall-runoff model calibration. Water Sci Technol 36:53–60. https://doi.org/10.1016/S0273-1223(97)00461-7

    Article  Google Scholar 

  • Dandy GC, Simpson AR, Murphy LJ (1996) An Improved An improved genetic algorithm for pipe network optimization. Water Resour Res 32:449–458. https://doi.org/10.1002/wrcr.20175/abstract/PERMISSIONS

    Article  Google Scholar 

  • de Castro LN, Von Zuben FJ (2002a) Learning and optimization using the clonal selection principle. IEEE Trans Evolut Comput 6(3):239–251

    Article  Google Scholar 

  • de Castro LN, Von Zuben FJ (2002b) Automatic determination of radial basis functions: an immunity-based approach. Int J Neurol Syst 11(6):523–535

    Article  Google Scholar 

  • De Vos NJ, Rientjes THM (2008) Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour Res 44:1–15. https://doi.org/10.1029/2007WR006734

    Article  Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant systems: optimization by a colony of cooperative agents. IEEE Trans Syst Man Cybern B 26:1–13

    Article  Google Scholar 

  • Duan Q, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28:1015–1031

    Article  Google Scholar 

  • Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521. https://doi.org/10.1007/BF00939380

    Article  Google Scholar 

  • Duan Q, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284. https://doi.org/10.1016/0022-1694(94)90057-4

    Article  Google Scholar 

  • Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129:210–225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)

    Article  Google Scholar 

  • Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38:129–154. https://doi.org/10.1080/03052150500384759

    Article  Google Scholar 

  • Fang T, Ball JE (2007) Evaluation of spatially variable control parameters in a complex catchment modelling system: a genetic algorithm application. J Hydroinform 9(3):163–173

    Article  Google Scholar 

  • Fang L, Chen P, Shihua L (2007) Particle swarm optimization with simulated annealing for TSP. In: Proceeding WSEAS international conference on artificial intelligence, knowledge engineering and data bases, vol 6. Corfu Island, World Scientific and Engineering Academy and Society WSEAS, Greece, pp 206–210

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    Google Scholar 

  • Franchini M, Galeati G, Berra S (1998) Global optimization techniques for the calibration of conceptual rainfall-runoff models. Hydrol Sci J 43:443–458. https://doi.org/10.1080/02626669809492137

    Article  Google Scholar 

  • Gironás J, Niemann JD, Roesner LA, Rodriguez F, Andrieu H (2009) Evaluation of methods for representing urban terrain in storm-water modeling. J Hydrol Eng 15(1):1–14

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms and Walsh functions: part I. A gentle introduction. Complex Syst 3:129–152

    Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration model of hydrologic models: multiple and non-commensurable measures of information. Water Resour Res 34:751–763

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Haddad OB, Hamedi F, Orouji H, Pazoki M, Loáiciga HA (2015) A re-parameterized and improved nonlinear Muskingum model for flood routing. Water Resour Manag 29(9):3419–3440

    Article  Google Scholar 

  • Hardyanto W, Merkel B (2007) Introducing probability and uncertainty in groundwater modeling with FEMWATER-LHS. J Hydrol 332:206–213. https://doi.org/10.1016/j.jhydrol.2006.06.035

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Houck CR, Joines JA, Kay MG (1996) Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems. Comput Oper Res 23(6):587–596

    Article  Google Scholar 

  • Houck CR, Joines JA, Kay MG, Wilson JR (1997) Empirical investigation of the benefits of partial Lamarckianism. Evol Comput 5:31–60

    Article  Google Scholar 

  • Huber WC, Dickinson RE (1992) Storm water management model user’s manual, version 4. Environmental Protection Agency, Georgia

    Google Scholar 

  • Ibrahim RA (2005) Liquid sloshing dynamics: theory and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jewell TK, Nunno TJ, Adrian DD (1978) Methodology for calibrating stormwater models. J Environ Eng Div 104(3):485–501

    Google Scholar 

  • Joines J, Kay M (2002) Utilizing hybrid genetic algorithms. In: Sarker R, Mahamurdian M, Yao X (eds) Evolutionary Optimization. Kluwer, Norwell, MA

    Google Scholar 

  • Jung BS, Karney BW (2006) Hydraulic optimization of transient protection devices using GA and PSO approaches. J Water Resour Plan Manag 132:44–52. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:1(44)

    Article  Google Scholar 

  • Karimi-Hosseini A, Bozorg Haddad O, Mariño MA (2011) Site selection of rain gauges using entropy methodologies. In: Proceedings of the Institution of Civil Engineers-Water Management, vol 164, no 7. Thomas Telford Ltd, pp 321–333

  • Karpouzos DK, Delay F, Katsifarakis KL, De Marsily G (2001) A multipopulation genetic algorithm to solve the inverse problem in hydrogeology. Water Resour Res 37:2291–2302. https://doi.org/10.1029/2000WR900411

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. Neural networks, 1995. Proceedings. IEEE Int. Conf., vol 4, pp 1942–1948. https://doi.org/10.1109/icnn.1995.488968

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science (80-) 220:671–680

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming. MIT Press, Cambridge

    Google Scholar 

  • Kuczera G (1997) Effiecient subspace probabilistic parameter optimization for catchment models. Water Resour 33:177–185

    Article  Google Scholar 

  • Laloy E, Bielders CL (2009) Modelling intercrop management impact on runoff and erosion in a continuous maize cropping system: part II. Model Pareto multi-objective calibration and long-term scenario analysis using disaggregated rainfall. Eur J Soil Sci 60:1022–1037. https://doi.org/10.1111/j.1365-2389.2009.01190.x

    Article  Google Scholar 

  • Lingireddy S, Ormsbee LE (2004) Optimal network calibration model based on genetic algorithms Srinivasa Lingireddy and Lindell E. Ormsbee. WRPMD’99, pp 1–8

  • Maier H, Simpson A, Zecchin A, Foong W, Phang K, Seah H, Tan C (2003) Ant colony optimization for design of water distribution systems. J Water Resour Plan Manag ASCE 129:200–209. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)

    Article  Google Scholar 

  • Moghaddam A, Behmanesh J, Farsijani A (2016) Parameters estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water Resour Manag 30(7):2143–2160

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1):127–145

    Article  Google Scholar 

  • Muleta MK, Mcmillan J, Amenu GG, Burian SJ (2013) Bayesian approach for uncertainty analysis of an urban storm water model and its application to a heavily urbanized watershed. J Hydrol Eng 18:1360–1371. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000705

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Orouji H, Mahmoudi N, Fallah-Mehdipour E, Pazoki M, Biswas A (2016) Shuffled frog-leaping algorithm for optimal design of open channels. J Irrig Drain Eng 142(10):06016008-1–06016008-8

    Article  Google Scholar 

  • Pohjola M (2006) PID controller design in networked control systems. Master Thesis. Department of Automaton and Systems Technology. Helsinki University of Technology

  • Raphael B, Smith IF (2003) A direct stochastic algorithm for global search. Appl Math Comput 146(2):729–758

    Google Scholar 

  • Rechenberg I (1973) Evolutions strategie: Optimierung Technischer Systeme Nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  • Rossman LA (2010) Storm water management model user’s manual, version 5.0 p. 276. Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency

  • Schwefel HP (1981) Numerical optimization of computer models. Wiley, Chichester

    Google Scholar 

  • Simpson AR, Goldberg DE (1994) Pipeline optimization via genetic algorithms: from theory to practice. In: Miller DS (ed) 2nd international conference on pipeline systems. BHR Group and Mech. Eng., Edinburgh, pp 309–320

    Google Scholar 

  • Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120:423–443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

    Article  Google Scholar 

  • Singh VP, Woolhiser DA (2002) Mathematical modeling of watershed hydrology. J Hydrol Eng 7(4):270–292

    Article  Google Scholar 

  • Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrological modeling of the iroquois river watershed using HSPF and SWAT1, pp 343–360

  • Smalley JB, Minsker BS, Goldberg DE (2000) Risk-based in situ bioremediation design using a noisy genetic algorithm. Water Resour Res 36(10):3043–3052. https://doi.org/10.1029/2000WR900191

    Article  Google Scholar 

  • Sorooshian S, Duan Q, Gupta VK (1993) Perviou: calibration of rainfall-runoff models’ application of global optimization to the Sacramento soil moisture accounting model. Water Resour Res 29:1185–1194

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  Google Scholar 

  • Sumner NR, Fleming PM, Bates BC (1997) Calibration of a modified SFB model for twenty-five Australian catchments using simulated annealing. J Hydrol 197:166–188. https://doi.org/10.1016/S0022-1694(96)03277-5

    Article  Google Scholar 

  • Temprano J, Arango O, Cagiao J, Suarez J, Tejero I (2007) Stormwater quality calibration by SWMM: a case study in Northern Spain. Water SA 32(1):55–63

    Article  Google Scholar 

  • Throneburg M, Amico P, Labitzke M (2014) An optimization planning framework for cost-effective wet-weather planning. In: Proceedings of the Water Environment Federation, vol 4, pp 1–19

  • Tolson BA, Shoemaker CA (2007) Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resour Res 43:1–16. https://doi.org/10.1029/2005WR004723

    Article  Google Scholar 

  • Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325. https://doi.org/10.1016/S0020-0190(02)00447-7

    Article  Google Scholar 

  • Van Liew MW, Veith TL, Bosch DD, Arnold JG (2007) Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. J Hydrol Eng 12(2):173–189

    Article  Google Scholar 

  • Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39:1–19. https://doi.org/10.1029/2002WR001746

    Article  Google Scholar 

  • Wan B, James W (2002) SWMM calibration using genetic algorithms. In: 9th Int. Conf. Urban Drain., vol 112, pp 92–105. https://doi.org/10.14796/jwmm.r208-07

  • Wang QJ (1991) The genetic algorithm and its applications to calibrating conceptual rainfall-runoff models. Water Resour Res 27:2467–2471. https://doi.org/10.1029/91WR01305

    Article  Google Scholar 

  • Wang L, Zhou YW (2009) Study on PSO multi-objective calibration of SWMM. China Water Wastewater 25(5):70–74

    Google Scholar 

  • Whitley D, Beveridge R, Graves C, Mathias K (1995) Test driving three 1995 genetic algorithms: new test functions and geometric matching. J Heuristics 1(1):77–104

    Article  Google Scholar 

  • Yazdi J (2018) Rehabilitation of urban drainage systems using a resilience-based approach. Water Resour Manag 32(2):721–734

    Article  Google Scholar 

  • Yazdi J, Yoo DG, Kim JH (2017) Comparative study of multi-objective evolutionary algorithms for hydraulic rehabilitation of urban drainage networks. Urban Water J 14(5):483–492

    Article  Google Scholar 

  • Yu PS, Yang TC, Chen SJ (2001) Comparison of uncertainty analysis methods for a distributed rainfall–runoff model. J Hydrol 244(1):43–59

    Article  Google Scholar 

  • Zheng C (1997) Modga documentation and user’s guide, technical report. Hydrogeology Group, Univ. of Ala., Birmingham

Download references

Acknowledgements

The authors would like to thank Delhi Government, India, for providing the data to carry out the work. The authors also want to acknowledge the financial support provided by the Indian Institute of Technology, Delhi, for doing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kaushal, D.R. & Gosain, A.K. Evaluation of evolutionary algorithms for the optimization of storm water drainage network for an urbanized area. Acta Geophys. 67, 149–165 (2019). https://doi.org/10.1007/s11600-018-00240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-00240-8

Keywords

Navigation