Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

Abstract

Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10−6–8 × 10−6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10−6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10−6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adam L, Batzle M, Lewallen KT, van Wijk K (2009) Seismic wave attenuation in carbonates. J Geophys Res 114(B6):B06208. doi:10.1029/2008JB005890

    Article  Google Scholar 

  2. Batzle ML, Han D-H, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity—direct measurements. Geophysics 71(1):N1–N9. doi:10.1190/1.2159053

    Article  Google Scholar 

  3. Behura J, Batzle M, Hofmann R, Dorgan J (2007) Heavy oils: their shear story. Geophysics 72(5):E175–E183. doi:10.1190/1.2756600

    Article  Google Scholar 

  4. Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90(B13):11524–11532. doi:10.1029/JB090iB13p11524

    Article  Google Scholar 

  5. Carcione JM (2007) Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic. Anelastic porous and electromagnetic media. Elsevier, Amsterdam

    Google Scholar 

  6. Chapman M, Liu E, Li X (2006) The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167(1):89–105. doi:10.1111/j.1365-246X.2006.02919.x

    Article  Google Scholar 

  7. Chapman S, Tisato N, Quintal B, Holliger K (2016) Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures. J Geophys Res Solid Earth 121(3):1664–1676. doi:10.1002/2015JB012575

  8. Dunn K-J (1987) Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders. J Acoust Soc Am 81(5):1259–1266. doi:10.1121/1.394529

    Article  Google Scholar 

  9. Gardner GHF, Wyllie MRJ, Droschak DM (1964) Effects of pressure and fluid saturation on the attenuation of elastic waves in sands. J Petrol Technol 16(2):189–198. doi:10.2118/721-PA

    Article  Google Scholar 

  10. Gurevich B, Makarynska D, de Paula OB, Pervukhina M (2010) A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics 75(6):N109–N120. doi:10.1190/1.3509782

    Article  Google Scholar 

  11. Karato S, Spetzler HA (1990) Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev Geophys 28(4):399–421. doi:10.1029/RG028i004p00399

    Article  Google Scholar 

  12. Lambert M-A, Saenger EH, Quintal B, Schmalholz SM (2013) Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir. Geophysics 78(1):T41–T52. doi:10.1190/GEO2011-0513.1

    Article  Google Scholar 

  13. Madonna C, Tisato N (2013) A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophys Prospect 61(2):302–314. doi:10.1111/1365-2478.12015

    Article  Google Scholar 

  14. Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44(2):161–178. doi:10.1190/1.1440958

    Article  Google Scholar 

  15. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Tool for seismic analysis of porous media. Cambridge University Press, Cambridge

    Google Scholar 

  16. Mikhaltsevitch V, Lebedev M, Gurevich B (2014) A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones. Leading Edge 33(6):616–618, 620–622. doi:10.1190/tle33060616.1

  17. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics 75(5):75A147–75A164. doi:10.1190/1.3463417

    Article  Google Scholar 

  18. O’Connell RJ, Budiansky B (1978) Measures of dissipation in viscoelastic media. Geophys Res Lett 5(1):5–8. doi:10.1029/GL005i001p00005

    Article  Google Scholar 

  19. O’Donnell M, Jaynes ET, Miller JG (1981) Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J Acoust Soc Am 69(3):696–701. doi:10.1121/1.385566

    Article  Google Scholar 

  20. Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22(9):1341–1358. doi:10.1016/S0191-8141(00)00042-0

    Article  Google Scholar 

  21. Pimienta L, Fortin J, Guéguen Y (2015) Bulk modulus dispersion and attenuation in sandstones. Geophysics 80(2):D111–D127. doi:10.1190/geo2014-0335.1

    Article  Google Scholar 

  22. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109(B1):B01201. doi:10.1029/2003JB002639

    Article  Google Scholar 

  23. Spencer JW Jr (1981) Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. J Geophys Res 86(B3):1803–1812. doi:10.1029/JB086iB03p01803

    Article  Google Scholar 

  24. Subramaniyan S, Quintal B, Tisato N, Saenger EH, Madonna C (2014) An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks. Geophys Prospect 62(6):1211–1223. doi:10.1111/1365-2478.12171

    Article  Google Scholar 

  25. Subramaniyan S, Quintal B, Madonna C, Saenger EH (2015) Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow. J Geophys Res Solid Earth 120(11):7526–7535. doi:10.1002/2015JB012290

    Article  Google Scholar 

  26. Tisato N, Quintal B (2013) Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophys J Int 195(1):342–351. doi:10.1093/gji/ggt259

    Article  Google Scholar 

  27. Tisato N, Quintal B (2014) Laboratory measurements of seismic attenuation in sandstone: strain versus fluid saturation effects. Geophysics 79(5):WB9–WB14. doi:10.1190/geo2013-0419.1

  28. Toksöz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 44(4):681–690. doi:10.1190/1.1440969

    Article  Google Scholar 

  29. Usher MJ (1962) Elastic behavior of rocks at lower frequencies. Geophys Prospect 10(2):119–127. doi:10.1111/j.1365-2478.1962.tb02002.x

    Article  Google Scholar 

  30. Winkler KW (1983) Frequency dependent ultrasonic properties of high-porosity sandstones. J Geophys Res 88(B11):9493–9499. doi:10.1029/JB088iB11p09493

    Article  Google Scholar 

  31. Winkler KW (1985) Dispersion analysis of velocity and attenuation in Berea sandstone. J Geophys Res 90(B8):6793–6800. doi:10.1029/JB090iB08p06793

    Article  Google Scholar 

  32. Winkler KW, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6(1):1–4. doi:10.1029/GL006i001p00001

    Article  Google Scholar 

  33. Winkler KW, Nur A, Gladwin M (1979) Friction and seismic attenuation in rocks. Nature 277(5697):528–531. doi:10.1038/277528a0

    Article  Google Scholar 

  34. Zimmerman RW (1991) Compressibility of sandstones, developments in petroleum science, vol 29. Elsevier Science Publishing Co., Inc., New York

    Google Scholar 

Download references

Acknowledgements

Petrobras co-funded this project. We would like to thank Claudio Madonna for his support in the laboratory and Prof. Jean-Pierre Burg for providing a conducive research environment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shankar Subramaniyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subramaniyan, S., Quintal, B. & Saenger, E.H. Forced oscillation measurements of seismic attenuation in fluid saturated sandstone. Acta Geophys. 65, 165–172 (2017). https://doi.org/10.1007/s11600-017-0014-0

Download citation

Keywords

  • Forced oscillation
  • Sandstone
  • Strain
  • Attenuation