Acta Geophysica

, Volume 65, Issue 1, pp 165–172 | Cite as

Forced oscillation measurements of seismic attenuation in fluid saturated sandstone

  • Shankar SubramaniyanEmail author
  • Beatriz Quintal
  • Erik H. Saenger
Research Article


Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1–100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10−6–8 × 10−6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10−6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10−6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.


Forced oscillation Sandstone Strain Attenuation 



Petrobras co-funded this project. We would like to thank Claudio Madonna for his support in the laboratory and Prof. Jean-Pierre Burg for providing a conducive research environment.


  1. Adam L, Batzle M, Lewallen KT, van Wijk K (2009) Seismic wave attenuation in carbonates. J Geophys Res 114(B6):B06208. doi: 10.1029/2008JB005890 CrossRefGoogle Scholar
  2. Batzle ML, Han D-H, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity—direct measurements. Geophysics 71(1):N1–N9. doi: 10.1190/1.2159053 CrossRefGoogle Scholar
  3. Behura J, Batzle M, Hofmann R, Dorgan J (2007) Heavy oils: their shear story. Geophysics 72(5):E175–E183. doi: 10.1190/1.2756600 CrossRefGoogle Scholar
  4. Bourbie T, Zinszner B (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J Geophys Res 90(B13):11524–11532. doi: 10.1029/JB090iB13p11524 CrossRefGoogle Scholar
  5. Carcione JM (2007) Wave fields in real media: theory and numerical simulation of wave propagation in anisotropic. Anelastic porous and electromagnetic media. Elsevier, AmsterdamGoogle Scholar
  6. Chapman M, Liu E, Li X (2006) The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophys J Int 167(1):89–105. doi: 10.1111/j.1365-246X.2006.02919.x CrossRefGoogle Scholar
  7. Chapman S, Tisato N, Quintal B, Holliger K (2016) Seismic attenuation in partially saturated Berea sandstone submitted to a range of confining pressures. J Geophys Res Solid Earth 121(3):1664–1676. doi: 10.1002/2015JB012575
  8. Dunn K-J (1987) Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders. J Acoust Soc Am 81(5):1259–1266. doi: 10.1121/1.394529 CrossRefGoogle Scholar
  9. Gardner GHF, Wyllie MRJ, Droschak DM (1964) Effects of pressure and fluid saturation on the attenuation of elastic waves in sands. J Petrol Technol 16(2):189–198. doi: 10.2118/721-PA CrossRefGoogle Scholar
  10. Gurevich B, Makarynska D, de Paula OB, Pervukhina M (2010) A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics 75(6):N109–N120. doi: 10.1190/1.3509782 CrossRefGoogle Scholar
  11. Karato S, Spetzler HA (1990) Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Rev Geophys 28(4):399–421. doi: 10.1029/RG028i004p00399 CrossRefGoogle Scholar
  12. Lambert M-A, Saenger EH, Quintal B, Schmalholz SM (2013) Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir. Geophysics 78(1):T41–T52. doi: 10.1190/GEO2011-0513.1 CrossRefGoogle Scholar
  13. Madonna C, Tisato N (2013) A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophys Prospect 61(2):302–314. doi: 10.1111/1365-2478.12015 CrossRefGoogle Scholar
  14. Mavko GM, Nur A (1979) Wave attenuation in partially saturated rocks. Geophysics 44(2):161–178. doi: 10.1190/1.1440958 CrossRefGoogle Scholar
  15. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Tool for seismic analysis of porous media. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Mikhaltsevitch V, Lebedev M, Gurevich B (2014) A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones. Leading Edge 33(6):616–618, 620–622. doi: 10.1190/tle33060616.1
  17. Müller TM, Gurevich B, Lebedev M (2010) Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review. Geophysics 75(5):75A147–75A164. doi: 10.1190/1.3463417 CrossRefGoogle Scholar
  18. O’Connell RJ, Budiansky B (1978) Measures of dissipation in viscoelastic media. Geophys Res Lett 5(1):5–8. doi: 10.1029/GL005i001p00005 CrossRefGoogle Scholar
  19. O’Donnell M, Jaynes ET, Miller JG (1981) Kramers–Kronig relationship between ultrasonic attenuation and phase velocity. J Acoust Soc Am 69(3):696–701. doi: 10.1121/1.385566 CrossRefGoogle Scholar
  20. Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22(9):1341–1358. doi: 10.1016/S0191-8141(00)00042-0 CrossRefGoogle Scholar
  21. Pimienta L, Fortin J, Guéguen Y (2015) Bulk modulus dispersion and attenuation in sandstones. Geophysics 80(2):D111–D127. doi: 10.1190/geo2014-0335.1 CrossRefGoogle Scholar
  22. Pride SR, Berryman JG, Harris JM (2004) Seismic attenuation due to wave-induced flow. J Geophys Res 109(B1):B01201. doi: 10.1029/2003JB002639 CrossRefGoogle Scholar
  23. Spencer JW Jr (1981) Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. J Geophys Res 86(B3):1803–1812. doi: 10.1029/JB086iB03p01803 CrossRefGoogle Scholar
  24. Subramaniyan S, Quintal B, Tisato N, Saenger EH, Madonna C (2014) An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks. Geophys Prospect 62(6):1211–1223. doi: 10.1111/1365-2478.12171 CrossRefGoogle Scholar
  25. Subramaniyan S, Quintal B, Madonna C, Saenger EH (2015) Laboratory-based seismic attenuation in Fontainebleau sandstone: Evidence of squirt flow. J Geophys Res Solid Earth 120(11):7526–7535. doi: 10.1002/2015JB012290 CrossRefGoogle Scholar
  26. Tisato N, Quintal B (2013) Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale. Geophys J Int 195(1):342–351. doi: 10.1093/gji/ggt259 CrossRefGoogle Scholar
  27. Tisato N, Quintal B (2014) Laboratory measurements of seismic attenuation in sandstone: strain versus fluid saturation effects. Geophysics 79(5):WB9–WB14. doi: 10.1190/geo2013-0419.1
  28. Toksöz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics 44(4):681–690. doi: 10.1190/1.1440969 CrossRefGoogle Scholar
  29. Usher MJ (1962) Elastic behavior of rocks at lower frequencies. Geophys Prospect 10(2):119–127. doi: 10.1111/j.1365-2478.1962.tb02002.x CrossRefGoogle Scholar
  30. Winkler KW (1983) Frequency dependent ultrasonic properties of high-porosity sandstones. J Geophys Res 88(B11):9493–9499. doi: 10.1029/JB088iB11p09493 CrossRefGoogle Scholar
  31. Winkler KW (1985) Dispersion analysis of velocity and attenuation in Berea sandstone. J Geophys Res 90(B8):6793–6800. doi: 10.1029/JB090iB08p06793 CrossRefGoogle Scholar
  32. Winkler KW, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6(1):1–4. doi: 10.1029/GL006i001p00001 CrossRefGoogle Scholar
  33. Winkler KW, Nur A, Gladwin M (1979) Friction and seismic attenuation in rocks. Nature 277(5697):528–531. doi: 10.1038/277528a0 CrossRefGoogle Scholar
  34. Zimmerman RW (1991) Compressibility of sandstones, developments in petroleum science, vol 29. Elsevier Science Publishing Co., Inc., New YorkGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2017

Authors and Affiliations

  • Shankar Subramaniyan
    • 1
    Email author
  • Beatriz Quintal
    • 2
  • Erik H. Saenger
    • 3
  1. 1.Department of Earth SciencesETH ZurichZurichSwitzerland
  2. 2.Institute of Earth SciencesUniversity of LausanneLausanneSwitzerland
  3. 3.International Geothermal Centre and Ruhr Universität BochumBochumGermany

Personalised recommendations