Skip to main content

Advertisement

Log in

Volcanic ash cloud detection from MODIS image based on CPIWS method

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Volcanic ash cloud detection has been a difficult problem in moderate-resolution imaging spectroradiometer (MODIS) multispectral remote sensing application. Principal component analysis (PCA) and independent component analysis (ICA) are effective feature extraction methods based on second-order and higher order statistical analysis, and the support vector machine (SVM) can realize the nonlinear classification in low-dimensional space. Based on the characteristics of MODIS multispectral remote sensing image, via presenting a new volcanic ash cloud detection method, named combined PCA-ICA-weighted and SVM (CPIWS), the current study tested the real volcanic ash cloud detection cases, i.e., Sangeang Api volcanic ash cloud of 30 May 2014. Our experiments suggest that the overall accuracy and Kappa coefficient of the proposed CPIWS method reach 87.20 and 0.7958%, respectively, under certain conditions with the suitable weighted values; this has certain feasibility and practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Centre LVAA (2014), London volcanic ash advisory centre (VAAC), http://www.metoffice.gov.uk/aviation/vaac/. Accessed 14 Aug 2014

  • Chang CI, Chiang SS, Smith JA, Ginsberg IW (2002) Linear spectral random mixture analysis for hyperspectral imagery. IEEE Trans Geosci Remote 40(2):375–392. doi:10.1109/WHISPERS.2009.5289096

    Article  Google Scholar 

  • Christopher SA, Feng N, Naeger A, Johnson B, Marenco F (2012) Satellite remote sensing analysis of the 2010 Eyjafjallajökull volcanic ash cloud over the North Sea during 4–18 May 2010. J Biol Chem 117(D20):401–409. doi:10.1029/2011JD016850

    Google Scholar 

  • Corradini S, Spinetti C, Carboni E (2008) Mt. Etna tropospheric ash retrieval and sensitivity analysis using moderater resolution imaging spectroradiometer measurements. J Appl Remote Sens 2(1):23550–23570. doi:10.1117/1.3046674

    Article  Google Scholar 

  • Corradini S, Merucci L, Folch A (2011) Volcanic ash cloud properties: comparison between MODIS satellite retrievals and FALL3D transport model. IEEE Geosci Remote Sens Lett 8(2):248–252. doi:10.1109/LGRS.2010.2064156

    Article  Google Scholar 

  • Duda T, Canty M (2002) Unsupervised classification of satellite imagery: choosing a good algorithm. Int J Remote Sens 23(11):2193–2212. doi:10.1080/01430060110078467

    Article  Google Scholar 

  • Ellrod GP (2004) Impact on volcanic ash detection caused by the loss of the 12.0 µm “Split Window” band on GOES imagers. J Volcanol Geotherm Res 135(1–2):91–103. doi:10.1016/j.jvolgeores.2003.12.009

    Article  Google Scholar 

  • Ellrod GP, Schreiner AJ (2004) Volcanic ash detection and cloud top height estimates from the GOES-12 imager: coping without a 12 µm infrared band. Geophys Res Lett 31(15):1–4. doi:10.1029/2004GL020395

    Article  Google Scholar 

  • Heblinski J, Schmieder K, Heege T, Agyemang TK, Sayadyan H, Vardanyan L (2011) High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment. Hydrobiologia 61(1):97–111. doi:10.1007/s10750-010-0466-6

    Article  Google Scholar 

  • Hillger DW, Clark J (2002a) Principal component image analysis of MODIS for volcanic ash. Part I: most important bands and implications for future GOES imagers. J Appl Meteorol 41(1):985–1001. doi:10.1175/1520-0450(2002)041<0985:PCIAOM>2.0.CO;2

    Google Scholar 

  • Hillger DW, Clark J (2002b) Principal component image analysis of MODIS for volcanic ash. Part II: simulation of current GOES and GOES-M imagers. J Appl Meteorol 41(10):1003–1010. doi:10.1175/1520-0450(2002)041<1003:PCIAOM>2.0.CO;2

    Article  Google Scholar 

  • Hyvarinen A (1999) Survey on independent component analysis. Neural Comput Surv 22(2):94–128

    Google Scholar 

  • Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430. doi:10.1016/S0893-6080(00)00026-5

    Article  Google Scholar 

  • Lee TW, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2):417–441. doi:10.1162/089976699300016719

    Article  Google Scholar 

  • Li CF, Yin JY (2013) Variational Bayesian independent component analysis-support vector machine for remote sensing classification. Comput Electr Eng 39(3):717–726. doi:10.1016/j.compeleceng.2012.10.004

    Article  Google Scholar 

  • Li CF, Dai YY, Zhao JY, Yin Y, Zhou SQ (2014) Remote sensing detection of volcanic ash cloud using independent component analysis. Seismol Geol 36(1):137–142. doi:10.3969/j.issn.0253-4967.2014.01.011

    Google Scholar 

  • Li CF, Dai YY, Zhao JJ, Zhou SQ, Yin JY, Xue D (2015) Remote sensing monitoring of volcanic ash clouds based on PCA method. Acta Geophys 63(2):432–450. doi:10.2478/s11600-014-0257-y

    Article  Google Scholar 

  • Liang L, Yang MH, Li YF (2010) Hyperspectral remote sensing image classification based on ICA and SVM algorithm. Spectrosc Spectr Anal 30(10):2724–2728. doi:10.3964/j.issn.1000-0593(2010)10-2724-05

    Google Scholar 

  • Mackie S, Millington S, Watson IM (2014) How assumed composition affects the interpretation of satellite observations of volcanic ash. Meteorol Appl 21(1):20–29. doi:10.1002/met.1445

    Article  Google Scholar 

  • Montopoli M, Cimini D, Lamantea M, Herzog M, Graf HF, Marzano FS (2013) Microwave radiometric remote sensing of volcanic ash clouds from space: model and data analysis. IEEE Trans Geosci Remote 51(9):4678–4691. doi:10.1109/TGRS.2013.2260343

    Article  Google Scholar 

  • Mountrakis G, Irn J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm 66(3):247–249. doi:10.1016/j.ISPRSJPRS.2010.11.001

    Article  Google Scholar 

  • Pavolonis MJ, Heidinger AK, Sieglaff J (2013) Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J Geophys Res 118(3):1436–1458. doi:10.1002/JGRD.50173

    Google Scholar 

  • Prata AJ, Prata AT (2012) Eyjafjallajökull volcanic ash concentrations determined using spin enhanced visible and infrared imager measurements. J Geophys Res 117(D20):2156–2202. doi:10.1029/2011JD016800

    Article  Google Scholar 

  • Sahin M, Yildiz BY, Senkal O, Pestemalci V (2012) Modeling and remote sensing of land surface temperature in Turkey. J Indian Soc Remote 40(3):399–409. doi:10.1007/s12524-011-0158-3

    Article  Google Scholar 

  • Sanchez-Azofeifa A, Rivard B, Wright J, Feng JL, Li PJ, Chong MM, Bohlman SA (2011) Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery. Sensors 11(4):3831–3851. doi:10.3390/s110403831

    Article  Google Scholar 

  • Schumann U, Weinzierl B, Reitebuch O, Schlager H, Minikin A, Forster C, Baumann R, Sailer T, Graf K, Mannstein H, Voigt C, Rahm S, Simmet R, Scheibe M, Lichtenstern M, Stock P, Rüba H, Schäuble D, Tafferner A, Rautenhaus M, Gerz T, Ziereis H, Krautstrunk M, Mallaun C, Gayet J-F, Lieke K, Kandler K, Ebert M, Weinbruch S, Stohl A, Gasteiger J, Groß S, Freudenthaler V, Wiegner M, Ansmann A, Tesche M, Olafsson H, Sturm K (2011) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys 11(5):2245–2279. doi:10.5194/acp-11-2245-2011

    Article  Google Scholar 

  • Segl K, Roessner S, Heiden U (2003) Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS J Photogramm 58(1–2):99–112. doi:10.1016/S0924-2716(03)00020-0

    Article  Google Scholar 

  • Spinetti C, Barsotti S, Neri A, Buongiorno MF, Doumaz F, Nannipieri L (2013) Investigation of the complex dynamics and structure of the 2010 Eyjafjallajökull volcanic ash cloud using multispectral images and numerical simulations. J Geophys Res 118(10):4729–4747. doi:10.1002/jgrd.50328

    Google Scholar 

  • Wang XM, Zeng SG, Xia DS (2006) Remote sensing image classification based on a loose modified fast ICA algorithm. J. Comput Res Dev 43(4):708–715 (in Chinese)

    Article  Google Scholar 

  • Wang ZQ, Liu XQ, Zhang GL, Wang ZJ (2007) Face recognition based on PCA and ICA. J Huazhong Nor Univ 41(3):373–376 (in Chinese)

    Google Scholar 

  • Ward CA, Starks SA (1999) An approach to predict Africanized honey bee migration using remote sensing. Comput Electr Eng 26(1):33–45. doi:10.1016/S0045-7906(99)00028-2

    Article  Google Scholar 

  • Wen XP, Yang XF, Hu GD (2011) Relationship between land cover ration and urban heat island from remote sensing and automatic weather stations data. J Ind Soc Remote 39(2):193–201. doi:10.1007/s12524-011-0076-4

    Article  Google Scholar 

  • Western LM, Watson MI, Francis PN (2015) Uncertainty in two-channel infrared remote sensing retrievals of a well-characterised volcanic ash cloud. Bull Volcanol 77(8):1–12. doi:10.1007/s00445-015-0950-y

    Article  Google Scholar 

  • Xu YM, Qin ZH, Wan HX (2010) Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in urbanization process: a case study in Suzhou, China. J Ind Soc Remote 38(4):654–663. doi:10.1007/s12524-011-0073-7

    Article  Google Scholar 

  • Yi WB, Tang H, Chen YH (2011) An object-oriented semantic clustering algorithm for high-resolution remote sensing images using the aspect model. IEEE Geosci Remote Sens Lett 8(3):522–526. doi:10.1109/LGRS.2010.2090034

    Article  Google Scholar 

  • Zhao Y, Liang Y, Ma BJ, Li YS, Wu XJ (2014) Identification of Icelandic volcanic ash cloud based on FY-3A remote sensing data. Acta Petrol Sin 30(12):3693–3700 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We thank the the anonymous reviewers and editorial team for their vital comments and suggestions made. This work was supported by the Projects of National Science Foundation of China (41404024), Shanghai Science and Technology Development Foundation (16142203000) and Young Teachers Training and Supporting Plan in Shanghai Universities (2014-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengfan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Li, C., Lei, Y. et al. Volcanic ash cloud detection from MODIS image based on CPIWS method. Acta Geophys. 65, 151–163 (2017). https://doi.org/10.1007/s11600-017-0013-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0013-1

Keywords

Navigation