Skip to main content

Insight into variability of spring and flash flood events in Lithuania

Abstract

In this research, variability of spring (from 1 March to 30 May) and flash (from 1 June to 30 November) floods in rivers of different regions was analysed. The territory of Lithuania is divided into three regions according to hydrological regime of the rivers: Western, Central, and Southeastern. The maximum river discharge data of spring and flash floods [a total of 31 water gauging stations (WGS)] were analysed. Comparison of the data of four periods (1922–2013, 1941–2013, 1961–2013, and 1991–2013) with the data of the reference period (1961–1990) was performed. Analysis included the longest discharge data set of the Nemunas River at Smalininkai WGS (1812–2013) as well. Mixed patterns of flood changes in Lithuanian rivers were detected. The analysis of flood discharges of the Nemunas River indicated that both spring and flash floods in Lithuania were getting smaller.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Arheimer B, Lindström G (2015) Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100). Hydrol Earth Syst Sci 19:771–784. doi:10.5194/hess-19-771-2015

    Article  Google Scholar 

  • Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148. doi:10.1007/s11069-006-9065-2

    Article  Google Scholar 

  • Bormann H, Pinter N, Elfert S (2011) Hydrological signatures of flood trends on German rivers: flood frequencies, flood heights and specific stages. J Hydrol 404:50–66. doi:10.1016/j.jhydrol.2011.04.019

    Article  Google Scholar 

  • Brazdil R, Glaser R, Pfister C, Stangl H (2002) Floods in Europe—a look into the past. PAGES News 10(3):21–23

    Google Scholar 

  • Chen H, Guo SL, Xu CY, Singh VP (2007) Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang basin. J Hydrol 344(3–4):171–184. doi:10.1016/j.jhydrol.2007.06.034

    Article  Google Scholar 

  • Dahmen ER, Hall MJ (1990) Screening of hydrological data: tests for stationarity and relative consistency. ILRI Publication No. 49, Wageningen

    Google Scholar 

  • Gailiušis B, Jablonskis J, Kovalenkovienė M (2001) The Lithuanian rivers. Hydrography and runoff. LEI, Kaunas (in Lithuanian)

    Google Scholar 

  • Gailiušis B, Kriaučiūnienė J, Jakimavičius D, Šarauskienė D (2011) The variability of long-term runoff series in the Baltic Sea drainage basin. Baltica 24(1):45–54

    Google Scholar 

  • Glaser R, Stangl H (2004) Climate and floods in Central Europe since AD 1000: data, methods, results and consequences. Surv Geophys 25:485–510. doi:10.1007/s10712-004-6201-y

    Article  Google Scholar 

  • Han D (2001) Flood risk assessment and management. University of Bristol, Bristol

    Google Scholar 

  • Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have streamflow droughts in Europe become more severe or frequent. Int J Climatol 21:317–333. doi:10.1002/joc.619

    Article  Google Scholar 

  • Jacobeit J, Glaser R, Luterbacher J, Wanner H (2003) Links between flood events in Central Europe since AD 1500 and large-scale atmospheric circulation modes. Geophys Res Lett 30(4):211–214. doi:10.1029/2002GL016433

    Article  Google Scholar 

  • Kaczmarek Z (2003) The impact of climate variability on flood risk in Poland. Risk Anal 23:559–566. doi:10.1111/1539-6924.00336

    Article  Google Scholar 

  • Kahya E, Kalaycı S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kochanek K, Strupczewski WG, Bogdanowicz E (2011) On seasonal approach to flood frequency modelling. Part II: Flood frequency analysis of Polish rivers. Hydrol Process 26(5):717–730. doi:10.1002/hyp.8178

    Article  Google Scholar 

  • Korhonen J, Kuusisto E (2010) Long-term changes in the discharge regime in Finland. Hydrol Res 41(3–4):253–268. doi:10.2166/nh.2010.112

    Article  Google Scholar 

  • Kriaučiūnienė J, Meilutytė-Barauskienė D, Reihan A, Koltsova T, Lizuma L, Šarauskienė D (2012) Variability in temperature, precipitation and river discharge in Baltic States. Boreal Environ Res 17:150–162

    Google Scholar 

  • Kundzewicz ZW, Graczyk D, Maurer T, Pińskwar I, Radziejewski M, Svensson C, Szwed M (2005) Trend detection in river flow series: 1. Annual maximum flow. Hydrol Sci J 50(5):797–810. doi:10.1623/hysj.2005.50.5.797

    Article  Google Scholar 

  • Kundzewicz ZW, Pinskwar I, Brakenridge GR (2013) Large floods in Europe, 1985–2009. Hydrol Sci J 58(1):1–7. doi:10.1080/02626667.2012.745082

    Article  Google Scholar 

  • Li ZL, Xu ZX, Li JY, Li ZJ (2008) Shift trend and step changes for runoff time series in the Shiyang River Basin, Northwest China. Hydrol Process 22(23):4639–4646. doi:10.1002/hyp.7127

    Article  Google Scholar 

  • Llasat MC, Llasat-Botija M, Rodriguez A, Lindbergh S (2010) Flash floods in Catalonia: are current situation. Adv Geosci 26:105–111. doi:10.5194/adgeo-26-105-2010

    Article  Google Scholar 

  • Madsen H, Lawrence D, Lang M, Martinkova M, Kjeldsen TR (2014) Review of trend analysis and climate change projections of extreme precipitation and floods in Europe. J Hydrol 519(D):3634–3650. doi:10.1016/j.jhydrol.2014.11.003

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Mediero L, Kjeldsen TR, Macdonald N, Kohnova S, Merz B, Vorogushyn S, Wilson D, Alburquerque T, Blöschl G, Bogdanowicz E, Castellarin A, Hall J, Kobold M, Kriauciuniene J, Lang M, Madsen H, OnusluelGül G, Perdigão RAP, Roald LA, Salinas JL, Toumazis AD, Veijalainen N, Óðinn Þ (2015) Identification of coherent flood regions across Europe by using the longest stream flow records. J Hydrol 528:341–360. doi:10.1016/j.jhydrol.2015.06.016

    Article  Google Scholar 

  • Meilutytė-Barauskienė D, Kovalenkovienė M (2007) Change of spring flood parameters in Lithuanian rivers. Energetika 2:26–33

    Google Scholar 

  • Reihan A, Koltsova T, Kriaučiūnienė J, Lizuma L, Meilutytė-Barauskienė D (2007) Changes in water discharges of the Baltic States rivers in the 20th century and its relation to climate change. Nord Hydrol 38(4–5):401–412

    Article  Google Scholar 

  • Reihan A, Kriaučiūnienė J, Meilutyte-Barauskienė D, Kolcova T (2012) Temporal variation of spring flood in rivers of the Baltic States. Hydrol Res 43(4):301–314. doi:10.2166/nh.2012.141

    Article  Google Scholar 

  • Šarauskienė D, Kriaučiūnienė J, Reihan A, Klavis M (2015) Flood pattern changes in the rivers of the Baltic countries. J Environ Eng Landsc Manag 23(2):28–38. doi:10.3846/16486897.2014.937438

    Google Scholar 

  • Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann–Kendall and Spearman’s Rho tests arid regions of Iran. Water Resour Manag 26:211–224. doi:10.1007/s11269-011-9913-z

    Article  Google Scholar 

  • Solín L (2008) Analysis of floods occurrence in Slovakia in the period 1996–2006. J Hydrol Hydromech 56:95–115

    Google Scholar 

  • Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I (2011) On seasonal approach to flood frequency modelling. Part I: Two-component distribution revisited. Hydrol Process 26(5):705–716. doi:10.1002/hyp.8179

    Article  Google Scholar 

  • Strupczewski WG, Kochanek K, Bogdanowicz E, Markiewicz I, Feluch W (2016) Comparison of two nonstationary flood frequency analysis methods within the context of the variable regime in the representative Polish rivers. Acta Geophys 64(1):206–236. doi:10.1515/acgeo-2015-0070

    Article  Google Scholar 

  • Thorsteinsson T, Björnsson H (2012) Climate change and energy systems, impacts, risks and adaptation in the Nordic and Baltic countries. Nordic Council of Ministers, Copenhagen, Danmark

    Google Scholar 

  • Tonkaz T, Çetin M, Kâzım T (2007) The impact of water resources development projects on water vapour pressure trends in a semi-arid region, Turkey. Clim Chang 82(1):195–209. doi:10.1007/s10584-006-9160-0

    Article  Google Scholar 

  • Wu H, Soh LK, Samal A, Chen XH (2008) Trend analysis of streamflow drought events in Nebraska. Water Resour Manag 22(2):145–164. doi:10.1007/s11269-006-9148-6

    Article  Google Scholar 

  • Yaning C, Changchun X, Xingming H, Weihong L, Yapeng C, Chenggang Z, Zhaoxia Y (2009) Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int 208(1–2):53–61

    Article  Google Scholar 

  • Yiou P, Ribereau P, Naveau P, Nogaj M, Brázdil R (2006) Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrol Sci J 51(5):930–945. doi:10.1623/hysj.51.5.930

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman’s rho test for detecting monotonic trends in hydrological series. J Hydrol 259:254–271. doi:10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhang Q, Liu C, Xu CY, Xu YP, Jiang T (2006) Observed trends of water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol 324(1–4):255–265. doi:10.1016/j.jhydrol.2005.09.023

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by National Research Programme “Sustainability of agro-, forest and water ecosystems” according to the Project “Impact Assessment of Climate Change and Other Abiotic Environmental Factors on Aquatic Ecosystems” (SIT-11/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Meilutytė-Lukauskienė.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meilutytė-Lukauskienė, D., Akstinas, V., Kriaučiūnienė, J. et al. Insight into variability of spring and flash flood events in Lithuania. Acta Geophys. 65, 89–102 (2017). https://doi.org/10.1007/s11600-017-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0009-x

Keywords

  • Spring and flash floods
  • Lithuanian rivers
  • Mann–Kendall and Spearman-Rho tests