Skip to main content
Log in

Characteristics and Risk Factors for Pediatric Sepsis

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes.

Methods

This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses.

Results

A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1β (IL-1β) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1β levels were independent risk factors for poor prognosis in children with sepsis.

Conclusion

Lower Hb, ALB, and PLT counts and elevated IL-1β are independent risk factors for poor prognosis in children with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016,315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rubio I, Osuchowski MF, Shankar-Hari M, et al. Current gaps in sepsis immunology: new opportunities for translational research. Lancet Infect Dis, 2019,19(12):e422–e436

    Article  CAS  PubMed  Google Scholar 

  3. Ye L, Feng M, Lin Q, et al. Analysis of pathogenic factors on the death rate of sepsis patients. PLoS One, 2023,18(12):e0287254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xia ZF, Wu GS. Role of cytokines in sepsis and its current situation of clinical application. Chin J Burns (Chinese), 2019,35(1):3–7

    CAS  Google Scholar 

  5. Angus DC, Van Der Poll T. Severe sepsis and septic shock. N Engl J Med, 2013,369(9):840–851

    Article  CAS  PubMed  Google Scholar 

  6. Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther, 2021,6(1):407

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yoshimura J, Yamakawa K, Ogura H, et al. Benefit profile of recombinant human soluble thrombomodulin in sepsis-induced disseminated intravascular coagulation: a multicenter propensity score analysis. Crit Care, 2015,19(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schmidt C. The struggle to do no harm in clinical trials. Nature, 2017, 552(7685): s74–s75

    Article  CAS  PubMed  Google Scholar 

  9. Ronco C, Chawla L, Husain-Syed F, et al. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit Care, 2023,27(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xiao C, Wang S, Fang F, et al. Epidemiology of Pediatric Severe Sepsis in Main PICU Centers in Southwest China. Pediatr Crit Care Med, 2019,20(12):118–1125

    Article  Google Scholar 

  11. Dashefsky HS, Liu H, Hayes K, et al. Frequency of and Risk Factors Associated With Hospital Readmission After Sepsis. Pediatrics, 2023,152(1):e2022060819

    Article  PubMed  Google Scholar 

  12. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med, 2005,6(1):2–8

    Article  PubMed  Google Scholar 

  13. Wang X, Li R, Qian S, et al. Multilevel omics for the discovery of biomarkers in pediatric sepsis. Pediatr Investig, 2023,7(4):277–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schuurman AR, Reijnders TDY, Kullberg RFJ, et al. Sepsis: deriving biological meaning and clinical applications from high-dimensional data. Intensive Care Med Exp, 2021,9(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  15. Komorowski M, Green A, Tatham KC, et al. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine, 2022,86:104394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao YH, Zhao JY, Hu JH, et al. Identification of a Four-Gene Signature for Diagnosing Paediatric Sepsis. Biomed Res Int. 2022,14:5217885

    Google Scholar 

  17. Sun P, Cui M, Jing JJ, et al. Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections. J Transl Med, 2023,21(1):777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Araujo R, Bento LFN, Fonseca TH, et al. Infection Biomarkers Based on Metabolomics. Metabolites, 2022,12(2):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao H, Chen S, Ding RY. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol, 2021,12:733537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borghesi A, Trück J, Asgari S, et al. Whole-exome Sequencing for the Identification of Rare Variants in Primary Immunodeficiency Genes in Children With Sepsis: A Prospective, Population-based Cohort Study. Clin Infect Dis, 2020,71(10):e614–e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seymour CW, Kennedy JN, Wang S, et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA, 2019,321(20):2003–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhavani SV, Semler M, Qian ET, et al. Development and validation of novel sepsis subphenotypes using trajectories of vital signs. Intensive Care Med, 2022,48(11):582–1592

    Article  Google Scholar 

  23. Van Amstel RBE, Kennedy JN, Scicluna BP, et al. Uncovering heterogeneity in sepsis: a comparative analysis of subphenotypes. Intensive Care Med, 2023,49(11):1360–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanchez-Pinto LN, Bennet TD, Stroup EK, et al. Derivation, Validation, and Clinical Relevance of a Pediatric Sepsis Phenotype With Persistent Hypoxemia, Encephalopathy, and Shock. Pediatr Crit Care Med, 2023,24(10):795–806

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anderko RR, Gómez H, Canna SW, et al. Sepsis with liver dysfunction and coagulopathy predicts an inflammatory pattern of macrophage activation. Intensive Care Med Exp, 2022,10(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med, 2016,44(2):275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alcamo AM, Barren GJ, Becker AE, et al. Validation of a Computational Phenotype to Identify Acute Brain Dysfunction in Pediatric Sepsis. Pediatr Crit Care Med, 2022,23(12):1027–1036

    Article  PubMed  PubMed Central  Google Scholar 

  28. Basu RK, Hackbarth R, Gillespie S, et al. Clinical phenotypes of acute kidney injury are associated with unique outcomes in critically ill septic children. Pediatr Res, 2021,90(5):1031–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lautz AJ, Wong HR, Ryan TD, et al. Pediatric Sepsis Biomarker Risk Model Biomarkers and Estimation of Myocardial Dysfunction in Pediatric Septic Shock. Pediatr Crit Care Med, 2022,23(1):e20–e28

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deng P, Tang NN, Li L, et al. Diagnostic value of combined detection of IL-1β, IL-6, and TNF-α for sepsis-induced cardiomyopathy. Med Clin (Barc), 2022,158(9):413–417

    Article  CAS  PubMed  Google Scholar 

  31. Kapur R, Zufferey A, Boilard E, et al. Nouvelle cuisine: platelets served with inflammation. J Immunol, 2015,194(12):5579–5587

    Article  CAS  PubMed  Google Scholar 

  32. Shannon O. The role of platelets in sepsis. Res Pract Thromb Haemost, 2021,5(1):27–37

    Article  PubMed  Google Scholar 

  33. Chen J, Tu X, Huang M, et al. Prognostic value of platelet combined with serum procalcitonin in patients with sepsis. Medicine, 2023,102(34):e34953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fogagnolo A, Campo GC, Mari M, et al. The Underestimated Role of Platelets in Severe Infection a Narrative Review. Cells, 2022,11(3):424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Workman JK, Bailly DK, Reeder RW, et al. Risk Factors for Mortality in Refractory Pediatric Septic Shock Supported with Extracorporeal Life Support. ASAIO J, 2020, 66(10):1152–1160

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zheng YJ, Zhu XJ, Chen YW, et al. Establishment of a novel risk score for in-hospital mortality in adult sepsis patients. Ann Transl Med, 2022,10(14):781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi D, Peng M. Early Hemoglobin Status as a Predictor of Long-Term Mortality for Sepsis Patients in Intensive Care Units. Shock, 2021,55(2):215–223

    Article  CAS  PubMed  Google Scholar 

  38. Chen Y, Chen L, Meng Z, et al. The correlation of hemoglobin and 28-day mortality in septic patients: secondary data mining using the MIMIC-IV database. BMC Infect Dis, 2023, 23(1):417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maneta E, Aivalioti E, Tual-Chalot S, et al. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol, 2023,14:1144229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oster HS, Dolev Y, Kehat O, et al. Serum Hypoalbuminemia Is a Long-Term Prognostic Marker in Medical Hospitalized Patients, Irrespective of the Underlying Disease. J Clin Med, 2022,11(5):1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hao J, Zeng J. Analysis of the clinical characteristics and risk factors associated with the death in 101 children with sepsis. J Pathogen Biol, 2021,16(4):486–491

    Google Scholar 

  42. Ge Y, Huang M, Yao YM. Recent advances in the biology of IL-1 family cytokines and their potential roles in development of sepsis. Cytokine Growth Factor Rev (Chinese), 2019,45:24–34

    Article  CAS  Google Scholar 

  43. Mera S, Tatulescu D, Cismaru C, et al. Multiplex cytokine profiling in patients with sepsis. APMIS, 2011,119(2):155–163

    Article  CAS  PubMed  Google Scholar 

  44. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med, 2020,383(23):2255–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res, 2022,9(1):56

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lorente-Pozo S, Navarrete P, Garzón MJ, et al. DNA Methylation Analysis to Unravel Altered Genetic Pathways Underlying Early Onset and Late Onset Neonatal Sepsis. A Pilot Study. Front Immunol, 2021,12:622599

    Article  CAS  PubMed  Google Scholar 

  47. Mithal LB, Arshad M, Swigart LR, et al. Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr Res, 2022,91(2):447–453

    Article  PubMed  Google Scholar 

  48. Zhang W, Wang W, Hou W, et al. The diagnostic utility of IL-10, IL-17, and PCT in patients with sepsis infection. Front Public Health, 2022,10:923457

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tu H, Lai X, Li J, et al. Interleukin-26 is overexpressed in human sepsis and contributes to inflammation, organ injury, and mortality in murine sepsis. Crit Care, 2019,23(1):290

    Article  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto H, Ogura H, Shimizu K, et al. The clinical importance of a cytokine network in the acute phase of sepsis. Sci Rep, 2018,8(1):13995

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ben Azaiz M, Ben Jemaa A, Sellami W, et al. Deciphering the balance of IL-6/IL-10 cytokines in severe to critical COVID-19 patients. Immunobiology, 2022,227(4):152236

    Article  Google Scholar 

  52. Zeng L, Kang R, Zhu S, et al. ALK is a therapeutic target for lethal sepsis. Sci Transl Med, 2017,9(412):eaan5689

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, et al. P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nat Commun, 2019,10(1):2711

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brown KA, Brown GA, Lewis SM, et al. Targeting cytokines as a treatment for patients with sepsis: A lost cause or a strategy still worthy of pursuit? Int Immunopharmacol, 2016,36:291–299

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This project was supported by the Health Commission of Hubei Province (No. WJ2023M005) and Hubei Association of Pathophysiology (No. 2021HBAP004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Yb., Liu, Tl., Dai, Q. et al. Characteristics and Risk Factors for Pediatric Sepsis. CURR MED SCI (2024). https://doi.org/10.1007/s11596-024-2870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11596-024-2870-6

Key words

Navigation