Skip to main content

Advertisement

Log in

Rifaximin Prevents Intestinal Barrier Dysfunction and Alleviates Liver Injury in MCT-induced HSOS Mice

  • Original Articles
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Rifaximin is an effective component of treatment strategies for liver and intestinal diseases. However, the efficacy of rifaximin in hepatic sinusoidal obstruction syndrome (HSOS) has not been explored. The present study aimed to investigate the efficacy and mechanism of rifaximin in HSOS.

Methods

An HSOS model was established in mice through the administration of monocrotaline (MCT, 800 mg/kg), and part of the HSOS mice were intragastrically administered with rifaximin. Then, the efficacy of rifaximin in HSOS was evaluated based on the liver pathological findings, liver proinflammatory cytokines, and alanine aminotransferase and aspartate aminotransferase levels. The Ussing chamber was used to evaluate the intestinal permeability, and tight junction (TJ) proteins were measured by Western blotting and real-time polymerase chain reaction to evaluate the intestinal barrier integrity. Then, the serum proinflammatory cytokine levels were evaluated by enzyme-linked immunosorbent assay. Afterwards, an in vitro experiment was performed to determine the relationship between rifaximin and TJ proteins.

Results

Rifaximin effectively alleviated the MCT-induced HSOS liver injury, suppressed the expression of liver proinflammatory cytokines, and reduced the serum levels of tumor necrosis factor-alpha and interleukin-6. Furthermore, rifaximin reduced the intestinal permeability, improved the intestinal barrier integrity, and promoted the expression of TJ proteins.

Conclusion

The results revealed that the intestinal barrier integrity was destroyed in MCT-induced HSOS. The significant alleviation of MCT-induced HSOS induced by rifaximin might be correlated to the repairment of intestinal barrier integrity via the regulation of the TJ protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohty M, Malard F, Abecassis M, et al. Revised diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a new classification from the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant, 2016,51(7):906–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yakushijin K, Atsuta Y, Doki N, et al. Sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: Incidence, risk factors and outcomes. Bone Marrow Transplant, 2016,51(3):403–409

    Article  CAS  PubMed  Google Scholar 

  3. Dignan FL, Wynn RF, Hadzic N, et al. BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br J Haematol, 2013,163(4):444–457

    Article  CAS  PubMed  Google Scholar 

  4. Dai N, Yu YC, Ren TH, et al. Gynura root induces hepatic veno-occlusive disease: a case report and review of the literature. World J Gastroenterol, 2007,13(10):1628–1631

    Article  PubMed  PubMed Central  Google Scholar 

  5. EASL Clinical Practice Guidelines: Drug-induced liver injury. J Hepatol, 2019,70(6):1222–1261

  6. Yang XQ, Ye J, Li X, et al. Pyrrolizidine alkaloids-induced hepatic sinusoidal obstruction syndrome: Pathogenesis, clinical manifestations, diagnosis, treatment, and outcomes. World J Gastroenterol, 2019, 25(28):3753–3763

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Lédinghen V, Villate A, Robin M, et al. Sinusoidal obstruction syndrome. Clin Res Hepatol Gastroenterol, 2020,44(4):480–485

    Article  PubMed  Google Scholar 

  8. Fan CQ, Crawford JM. Sinusoidal obstruction syndrome (hepatic veno-occlusive disease). J Clin Exp Hepatol, 2014,4(4):332–346

    Article  PubMed  PubMed Central  Google Scholar 

  9. Valla DC, Cazals-Hatem D. Sinusoidal obstruction syndrome. Clin Res Hepatol Gastroenterol, 2016,40(4): 378–385

    Article  PubMed  Google Scholar 

  10. Harb R, Xie G, Lutzko C, et al. Bone marrow progenitor cells repair rat hepatic sinusoidal endothelial cells after liver injury. Gastroenterology, 2009,137(2):704–712

    Article  PubMed  Google Scholar 

  11. Xiao L, Hu L, Chu H, et al. Retrorsine Cooperates with Gut Microbiota to Promote Hepatic Sinusoidal Obstruction Syndrome by Disrupting the Gut Barrier. J Clin Transl Hepatol, 2022,10(6):1086–1098

    PubMed  PubMed Central  Google Scholar 

  12. Tripathi A, Debelius J, Brenner DA, et al. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol, 2018,15(7):397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chopyk DM, Grakoui A. Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology, 2020,159(3):849–863

    Article  CAS  PubMed  Google Scholar 

  14. Wang HJ, Gao B, Zakhari S, et al. Inflammation in alcoholic liver disease. Annu Rev Nutr, 2012,32:343–368

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meijers B, Farré R, Dejongh S, et al. Intestinal Barrier Function in Chronic Kidney Disease. Toxins (Basel), 2018,10(7):298

    Article  PubMed  Google Scholar 

  16. Suzuki T. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim Sci J, 2020, 91(1):e13357

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut, 2019, 68(3):547–561

    Article  CAS  PubMed  Google Scholar 

  18. Gangarapu V, Ince AT, Baysal B, et al. Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol, 2015,27(7):840–845

    Article  CAS  PubMed  Google Scholar 

  19. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 2005,41(6):1313–1321

    Article  PubMed  Google Scholar 

  20. Farhadi A, Gundlapalli S, Shaikh M, et al. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int, 2008,28(7):1026–1033

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thuy S, Ladurner R, Volynets V, et al. Nonalcoholic fatty liver disease in humans is associated with increased plasma endotoxin and plasminogen activator inhibitor 1 concentrations and with fructose intake. J Nutr, 2008,138(8):1452–1455

    Article  CAS  PubMed  Google Scholar 

  22. Bergheim I, Weber S, Vos M, et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol, 2008,48(6):983–992

    Article  CAS  PubMed  Google Scholar 

  23. Bass NM, Mullen KD, Sanyal A, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med, 2010,362(12):1071–1081

    Article  CAS  PubMed  Google Scholar 

  24. Jin Y, Ren X, Li G, et al. Beneficial effects of Rifaximin in post-infectious irritable bowel syndrome mouse model beyond gut microbiota. J Gastroenterol Hepatol, 2018,33(2):443–452

    Article  CAS  PubMed  Google Scholar 

  25. DeLeve LD, McCuskey RS, Wang X, et al. Characterization of a reproducible rat model of hepatic veno-occlusive disease. Hepatology, 1999,29(6):1779–1791

    Article  CAS  PubMed  Google Scholar 

  26. Ali AH, Carey EJ, Lindor KD. Diagnosis and management of primary biliary cirrhosis. Expert Rev Clin Immunol, 2014, 10(12):1667–1678

    Article  CAS  PubMed  Google Scholar 

  27. Kim S, Kim GH. Roles of claudin-2, ZO-1 and occludin in leaky HK-2 cells. PLoS One, 2017,12(12):e0189221

    Article  PubMed  PubMed Central  Google Scholar 

  28. Prozialeck WC, Edwards JR, Lamar PC, et al. Epithelial barrier characteristics and expression of cell adhesion molecules in proximal tubule-derived cell lines commonly used for in vitro toxicity studies. Toxicol In Vitro, 2006,20(6):942–953

    Article  CAS  PubMed  Google Scholar 

  29. Huang Z, Chen M, Wei M, et al. Liver Inflammatory Injury Initiated by DAMPs-TLR4-MyD88/TRIF-NFκB Signaling Pathway Is Involved in Monocrotaline-Induced HSOS. Toxicol Sci, 2019,172(2):385–397

    Article  CAS  PubMed  Google Scholar 

  30. Glück J, Waizenegger J, Braeuning A, et al. Pyrrolizidine Alkaloids Induce Cell Death in Human HepaRG Cells in a Structure-Dependent Manner. Int J Mol Sci, 2020,22(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chojkier M. Hepatic sinusoidal-obstruction syndrome: toxicity of pyrrolizidine alkaloids. J Hepatol, 2003, 39(3):437–446

    Article  CAS  PubMed  Google Scholar 

  32. Yang M, Ruan J, Fu PP, et al. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity. Chem Biol Interact, 2016,243:119–126

    Article  CAS  PubMed  Google Scholar 

  33. Teschke R, Vongdala N, Quan NV, et al. Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci, 2021,22(19):10419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang Z, Jing X, Sheng Y, et al. (-)-Epicatechin attenuates hepatic sinusoidal obstruction syndrome by inhibiting liver oxidative and inflammatory injury. Redox Biol, 2019,22:101117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Z, Zhao Q, Chen M, et al. Liquiritigenin and liquiritin alleviated monocrotaline-induced hepatic sinusoidal obstruction syndrome via inhibiting HSP60-induced inflammatory injury. Toxicology, 2019,428: 152307

    Article  CAS  PubMed  Google Scholar 

  36. Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut Microbiota and Intestinal Trans-Epithelial Permeability. Int J Mol Sci, 2020,21(17):6402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007,56(7):1761–1772

    Article  CAS  PubMed  Google Scholar 

  38. Liao L, Schneider KM, Galvez EJC, et al. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut, 2019,68(8):1477–1492

    Article  CAS  PubMed  Google Scholar 

  39. Ponziani FR, Zocco MA, Cerrito L, et al. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol, 2018,12(7):641–656

    Article  CAS  PubMed  Google Scholar 

  40. Mani V, Weber TE, Baumgard LH, et al. Growth and Development Symposium: Endotoxin, inflammation, and intestinal function in livestock. J Anim Sci, 2012,90(5):1452–1465

    Article  CAS  PubMed  Google Scholar 

  41. Rice JB, Stoll LL, Li WG, et al. Low-level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins. Arterioscler Thromb Vasc Biol, 2003,23(9):1576–1582

    Article  CAS  PubMed  Google Scholar 

  42. Xu Q, Guo J, Li X, et al. Necroptosis Underlies Hepatic Damage in a Piglet Model of Lipopolysaccharide-Induced Sepsis. Front Immunol, 2021,12:633830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Calanni F, Renzulli C, Barbanti M, et al. Rifaximin: beyond the traditional antibiotic activity. J Antibiot (Tokyo), 2014,67(9):667–670

    Article  CAS  PubMed  Google Scholar 

  44. DuPont HL, Jiang ZD, Okhuysen PC, et al. A randomized, double-blind, placebo-controlled trial of rifaximin to prevent travelers’ diarrhea. Ann Intern Med, 2005,142(10):805–812

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Ye or Yu Jin.

Ethics declarations

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

This study was supported by grants from the National Natural Science Foundation of China (No. 81800480 and NO. 81770582), and the Graduates’ Innovation Fund, Huazhong University of Science and Technology (No. 2021yjsCXCY106).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Yy., Hu, Ll., Yang, L. et al. Rifaximin Prevents Intestinal Barrier Dysfunction and Alleviates Liver Injury in MCT-induced HSOS Mice. CURR MED SCI 43, 1183–1194 (2023). https://doi.org/10.1007/s11596-023-2801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2801-y

Key words

Navigation