Skip to main content
Log in

Zuo Gui Wan Promotes Osteogenesis via PI3K/AKT Signaling Pathway: Network Pharmacology Analysis and Experimental Validation

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Objective

Osteogenesis is vitally important for bone defect repair, and Zuo Gui Wan (ZGW) is a classic prescription in traditional Chinese medicine (TCM) for strengthening bones. However, the specific mechanism by which ZGW regulates osteogenesis is still unclear. The current study is based on a network pharmacology analysis to explore the potential mechanism of ZGW in promoting osteogenesis.

Methods

A network pharmacology analysis followed by experimental validation was applied to explore the potential mechanisms of ZGW in promoting the osteogenesis of bone marrow mesenchymal stem cells (BMSCs).

Results

In total, 487 no-repeat targets corresponding to the bioactive components of ZGW were screened, and 175 target genes in the intersection of ZGW and osteogenesis were obtained. And 28 core target genes were then obtained from a PPI network analysis. A GO functional enrichment analysis showed that the relevant biological processes mainly involve the cellular response to chemical stress, metal ions, and lipopolysaccharide. Additionally, KEGG pathway enrichment analysis revealed that multiple signaling pathways, including the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) signaling pathway, were associated with ZGW-promoted osteogensis. Further experimental validation showed that ZGW could increase alkaline phosphatase (ALP) activity as well as the mRNA and protein levels of ALP, osteocalcin (OCN), and runt related transcription factor 2 (Runx 2). What’s more, Western blot analysis results showed that ZGW significantly increased the protein levels of p-PI3K and p-AKT, and the increases of these protein levels significantly receded after the addition of the PI3K inhibitor LY294002. Finally, the upregulated osteogenic-related indicators were also suppressed by the addition of LY294002.

Conclusion

ZGW promotes the osteogenesis of BMSCs via PI3K/AKT signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao K, Xu L, Tang J, et al. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnol, 2022, 20(1):141

    Article  CAS  Google Scholar 

  2. Qi J, Yu T, Hu B, et al. Current biomaterial-based bone tissue engineering and translational medicine. Int J Mol Sci, 2021,22(19):10233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vermeulen S, Tahmasebi Birgani Z, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials, 2022,283:121431

    Article  CAS  PubMed  Google Scholar 

  4. Yamamoto T, Hasegawa T, Fraitas PHL, et al. Histochemical characteristics on minimodeling-based bone formation induced by anabolic drugs for osteoporotic treatment. Biomed Res, 2021,42(5):161–171

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, Xia D, Li J, et al. BMSCs and osteoblast-engineered ECM synergetically promotes osteogenesis and angiogenesis in an ectopic bone formation model. Front Bioeng Biotechnol, 2022,10:818191

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shu HS, Liu YL, Tang XT, et al. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell, 2021,28(12):2122–2136.e2123

    Article  CAS  PubMed  Google Scholar 

  7. Wang N, Liu X, Tang Z, et al. Increased BMSC exosomal miR-140-3p alleviates bone degradation and promotes bone restoration by targeting Plxnb1 in diabetic rats. J Nanobiotechnol, 2022,20(1):97

    Article  Google Scholar 

  8. Xu W, Li B, Xu M, et al. Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed Pharmacother, 2022,146:112542

    Article  CAS  PubMed  Google Scholar 

  9. Peng Z, Xu R, You Q. Role of traditional Chinese medicine in bone regeneration and osteoporosis. Front Bioeng Biotechnol, 2022,10:911326

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Li J, Wang D, eds. Jingyue Quanshu. Beijing: China Medical Science Press, 2011.

    Google Scholar 

  11. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China. 2020 edition. Beijing: China Medical Science Press, 2020.

    Google Scholar 

  12. Chen L, Ren M, Cao J, et al. Zuogui Wan alleviated maternal kidney-yin deficiency-induced thymic epithelial cell dysfunction in newborn rats through Wnt/β-catenin signaling pathway. J Ethnopharmacol, 2021,279:114337

    Article  CAS  PubMed  Google Scholar 

  13. Li W, Liu Z, Liu L, et al. Effect of Zuogui pill and Yougui pill on osteoporosis: a randomized controlled trial. J Tradit Chin Med, 2018,38(1):33–42

    Article  PubMed  Google Scholar 

  14. Shen G, Shang Q, Zhang Z, et al. Zuo-Gui-Wan aqueous extract ameliorates glucocorticoid-induced spinal osteoporosis of rats by regulating let-7f and autophagy. Front Endocrinol (Lausanne), 2022,13:878963

    Article  PubMed  Google Scholar 

  15. Liu F, Tan F, Tong W, et al. Effect of Zuoguiwan on osteoporosis in ovariectomized rats through RANKL/OPG pathway mediated by β2AR. Biomed Pharmacother, 2018,103:1052–1060

    Article  CAS  PubMed  Google Scholar 

  16. Wu J, Li Y, Liu H, et al. The study of the mechanism of “kidney dominating bone”: the effect of Zuogui wan on the mRNA expression of Hepcidin, Fpn1 and OPG/RANKL. J Basic Chin Med, 2017,23(11):1548–1551

    Google Scholar 

  17. Zhou X, Guo Y, Yang K, et al. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. J Ethnopharmacol, 2022,282:114662

    Article  CAS  PubMed  Google Scholar 

  18. Chen P, Zhang J, Wang C, et al. The pathogenesis and treatment mechanism of Parkinson’s disease from the perspective of traditional Chinese medicine. Phytomedicine, 2022,100:154044

    Article  PubMed  Google Scholar 

  19. Chen J, Xu J, Huang P, et al. The potential applications of traditional Chinese medicine in Parkinson’s disease: A new opportunity. Biomed Pharmacother, 2022,149:112866

    Article  CAS  PubMed  Google Scholar 

  20. Nogales C, Mamdouh ZM, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci, 2022,43(2): 136–150

    Article  CAS  PubMed  Google Scholar 

  21. He S, Wang T, Shi C, et al. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J Ethnopharmacol, 2022, 282:114615

    Article  CAS  PubMed  Google Scholar 

  22. Yang S, Qian Z, Liu D, et al. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration. Cell Tissue Bank, 2019,20(2):209–220

    Article  CAS  PubMed  Google Scholar 

  23. Kang X, Chen L, Yang S, et al. Zuogui Wan slowed senescence of bone marrow mesenchymal stem cells by suppressing Wnt/beta-catenin signaling. J Ethnopharmacol, 2022,294:115323

    Article  CAS  PubMed  Google Scholar 

  24. Yang S, Zhu B, Tian XY, et al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance the osteoblastic differentiation of periodontal ligament stem cells under high glucose conditions through the PI3K/AKT signaling pathway. Biomed Environ Sci, 2022,35(9):811–820

    CAS  PubMed  Google Scholar 

  25. Bravenboer N, Oostlander AE, Van Bodegraven AA. Bone loss in patients with inflammatory bowel disease: cause, detection and treatment. Curr Opin Gastroenterol, 2021,37(2):128–134

    Article  CAS  PubMed  Google Scholar 

  26. Barsony J, Kleess L, Verbalis JG. Hyponatremia is linked to bone loss, osteoporosis, fragility and bone fractures. Front Horm Res, 2019,52:49–60

    Article  CAS  PubMed  Google Scholar 

  27. Ning K, Yang B, Chen M, et al. Functional heterogeneity of bone marrow mesenchymal stem cell subpopulations in physiology and pathology. Int J Mol Sci, 2022,23(19):11928

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu FX, Tan F, Fan QL, et al. Zuogui Wan improves trabecular bone microarchitecture in ovariectomy-induced osteoporosis rats by regulating orexin-A and orexin receptor. J Tradit Chin Med, 2021,41(6):927–934

    PubMed  Google Scholar 

  29. Xu YXZ, Xi S, Qian X. Evaluating traditional Chinese medicine and herbal products for the treatment of gestational diabetes mellitus. J Diabetes Res, 2019, 2019:9182595

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li HM, Gao X, Yang ML, et al. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-beta1 expression in nuclei of arcuate hypothalamus of monosodium glutamate-liver regeneration rats. World J Gastroenterol, 2004,10(19):2823–2826

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lai N, Zhang Z, Wang B, et al. Regulatory effect of traditional Chinese medicinal formula Zuo-Gui-Wan on the Th17/Treg paradigm in mice with bone loss induced by estrogen deficiency. J Ethnopharmacol, 2015,166:228–239

    Article  PubMed  Google Scholar 

  32. Zhao J, Zeng L, Wu M, et al. Efficacy of Chinese patent medicine for primary osteoporosis: A network meta-analysis. Complement Ther Clin Pract, 2021,44:101419

    Article  PubMed  Google Scholar 

  33. Bian W, Xiao S, Yang L, et al. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC Complement Med Ther, 2021,21(1):243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Comalada M, Ballester I, Bailón E, et al. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem Pharmacol, 2006,72(8):1010–1021

    Article  CAS  PubMed  Google Scholar 

  35. Wong SK, Chin KY, Ima-Nirwana S. The osteoprotective effects of kaempferol: the evidence from in vivo and in vitro studies. Drug Des Devel Ther, 2019,13:3497–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang F, Zhang P, Zhao W, et al. Research on the mechanism of kaempferol for treating senile osteoporosis by network pharmacology and molecular docking. Evid Based Complement Alternat Med, 2022,2022:6741995

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhou F, Mei J, Yuan K, et al. Isorhamnetin attenuates osteoarthritis by inhibiting osteoclastogenesis and protecting chondrocytes through modulating reactive oxygen species homeostasis. J Cell Mol Med, 2019, 23(6):4395–4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Solinas G, Becattini B. PI3K and AKT at the interface of signaling and metabolism. Curr Top Microbiol Immunol, 2022,436:311–336

    CAS  PubMed  Google Scholar 

  39. He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif, 2022,55(9):e13275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xia T, Liu X, Wang N, et al. PI3K/AKT/Nrf2 signalling pathway is involved in the ameliorative effects of xanthohumol on amyloid β-induced oxidative damage and bone loss. J Pharm Pharmacol, 2022,74(7):1017–1026

    Article  PubMed  Google Scholar 

  41. Lu Y, Liu S, Yang P, et al. Exendin-4 and eldecalcitol synergistically promote osteogenic differentiation of bone marrow mesenchymal stem cells through M2 macrophages polarization via PI3K/AKT pathway. Stem Cell Res Ther, 2022,13(1):113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang X, Zu H, Zhao D, et al. Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: In vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater, 2017,63:369–382

    Article  CAS  PubMed  Google Scholar 

  43. Zhao B, Peng Q, Poon EHL, et al. Leonurine promotes the osteoblast differentiation of rat BMSCs by activation of autophagy via the PI3K/Akt/mTOR pathway. Front Bioeng Biotechnol, 2021,9:615191

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Xu or Li-sheng Zhao.

Ethics declarations

The authors declare that they have no competing interests.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, B., Wang, Yg. et al. Zuo Gui Wan Promotes Osteogenesis via PI3K/AKT Signaling Pathway: Network Pharmacology Analysis and Experimental Validation. CURR MED SCI 43, 1051–1060 (2023). https://doi.org/10.1007/s11596-023-2782-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2782-x

Key words

Navigation