Skip to main content
Log in

Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Compared to portal vein ligation (PVL), simultaneous bile duct and portal vein ligation (BPL) can significantly enhance hypertrophy of the intact liver. This study aimed to investigate whether BPL could improve survival after extended hepatectomy independently of an increased remnant liver.

Methods

We adopted rat models of 90% BPL or 90% PVL. To investigate the role of bile acids (BAs) the BA pools in the PVL and BPL groups were altered by the diet. Staged resection preserving 10% of the estimated liver weight was performed 3 days after BPL; PVL; or sham operation. Histology, canalicular network (CN) continuity; and hepatocyte polarity were evaluated.

Results

At 3 days after BPL; PVL; or sham operation when the volumetric difference of the intended liver remained insignificant, the survival rates after extended hepatectomy were 86.7%, 47%, and 23.3%, respectively (P<0.01). BPL induced faster restoration of canalicular integrity along with an intensive but transient BA overload. Staged hepatectomy after BPL shortened the duration of the bile CN disturbance and limited BA retention. Decreasing the BA pools in the rats that underwent BPL could compromise these effects, whereas increasing the BA pools of rats that underwent PVL could induce similar effects. The changes in CN restoration were associated with activation of LKB1.

Conclusion

In addition to increasing the future remnant liver, BPL shortened the duration of the spatial disturbance of the CN and could significantly improve the tolerance of the hypertrophied liver to staged resection. BPL may be a safe and efficient future option for patients with an insufficient remnant liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol, 2021,18(1):40–55

    Article  PubMed  Google Scholar 

  2. de Haan L, van der Lely SJ, Warps AK, et al. Post-hepatectomy liver regeneration in the context of bile acid homeostasis and the gut-liver signaling axis. J Clin Transl Res, 2018,4(1):1–46

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiseleva YV, Antonyan SZ, Zharikova TS, et al. Molecular pathways of liver regeneration: A comprehensive review. World J Hepatol, 2021,13(3):270–290

    Article  PubMed  PubMed Central  Google Scholar 

  4. Isfordink CJ, Samim M, Braat M, et al. Portal vein ligation versus portal vein embolization for induction of hypertrophy of the future liver remnant: A systematic review and meta-analysis. Surg Oncol, 2017,26(3):257–267

    Article  CAS  PubMed  Google Scholar 

  5. Bax HR, Mansens BJ, Schalm L. Atrophy of the liver after occlusion of the bile ducts or portal vein and compensatory hypertrophy of the unoccluded portion and its clinical importance. Gastroenterology, 1956,31(2):131–155

    Article  CAS  PubMed  Google Scholar 

  6. Wu X, Rao J, Zhou X, et al. Partial ALPPS versus complete ALPPS for staged hepatectomy. BMC Gastroenterol, 2019,19(1):170

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ren W, Chen G, Wang X, et al. Simultaneous bile duct and portal vein ligation induce faster atrophy/hypertrophy complex than portal vein ligation: role of bile acids. Sci Rep, 2015,5:8455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steiner PE, Martinez JB. Effects on the Rat Liver of Bile Duct, Portal Vein and Hepatic Artery Ligations. Am J Pathol, 1961,39(3):257–289

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Iida H, Yasui C, Aihara T, et al. Simultaneous bile duct and portal venous branch ligation in two-stage hepatectomy. World J Gastroenterol, 2011,17(30):3554–3559

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meyer K, Morales-Navarrete H, Seifert S, et al. Bile canaliculi remodeling activates YAP via the actin cytoskeleton during liver regeneration. Mol Syst Biol, 2020,16(2):e8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartles JR, Hubbard AL. Preservation of hepatocyte plasma membrane domains during cell division in situ in regenerating rat liver. Dev Biol, 1986,118(1):286–295

    Article  CAS  PubMed  Google Scholar 

  12. Stamatoglou SC, Enrich C, Manson MM, et al. Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration. J Cell Biol, 1992,116(6):1507–1515

    Article  CAS  PubMed  Google Scholar 

  13. Hata S, Namae M, Nishina H. Liver development and regeneration: from laboratory study to clinical therapy. Dev Growth Differ, 2007,49(2):163–170

    Article  CAS  PubMed  Google Scholar 

  14. Takaki Y, Hirai S, Manabe N, et al. Dynamic changes in protein components of the tight junction during liver regeneration. Cell Tissue Res, 2001,305(3):399–409

    Article  CAS  PubMed  Google Scholar 

  15. Tomoyori T, Ogawa K, Mori M, et al. Ultrastructural changes in the bile canaliculi and the lateral surfaces of rat hepatocytes during restorative proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol, 1983,42(2):201–211

    Article  CAS  PubMed  Google Scholar 

  16. Ninomiya M, Shimada M, Terashi T, et al. Sustained spatial disturbance of bile canalicular networks during regeneration of the steatotic rat liver. Transplantation, 2004,77(3):373–379

    Article  PubMed  Google Scholar 

  17. Ninomiya M, Shirabe K, Terashi T, et al. Deceleration of regenerative response improves the outcome of rat with massive hepatectomy. Am J Transplant, 2010,10(7):1580–1587

    Article  CAS  PubMed  Google Scholar 

  18. Ikebuchi Y, Shimizu H, Ito K, et al. Ursodeoxycholic acid stimulates the formation of the bile canalicular network. Biochem Pharmacol, 2012,84(7):925–935

    Article  CAS  PubMed  Google Scholar 

  19. Fu D, Lippincott-Schwartz J, Arias IM. Cellular mechanism of bile acid-accelerated hepatocyte polarity. Small GTPases, 2011,2(6):314–317

    Article  PubMed  PubMed Central  Google Scholar 

  20. Engin A. Bile Acid Toxicity and Protein Kinases. Adv Exp Med Biol, 2021,1275:229–258

    Article  CAS  PubMed  Google Scholar 

  21. Fu D, Wakabayashi Y, Lippincott-Schwartz J, et al. Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway. Proc Natl Acad Sci U S A, 2011,108(4):1403–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang W, Ma K, Zhang J, et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science, 2006,312(5771):233–236

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. Transplantation, 1993,55(6):1265–1272

    Article  CAS  PubMed  Google Scholar 

  24. Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery, 1997,121(2):142–149

    Article  CAS  PubMed  Google Scholar 

  25. Porat-Shliom N, Tietgens AJ, Van Itallie CM, et al. Liver kinase B1 regulates hepatocellular tight junction distribution and function in vivo. Hepatology, 2016,64(4):1317–1329

    Article  CAS  PubMed  Google Scholar 

  26. Fu D, Arias IM. Intracellular trafficking of P-glyco-protein. Int J Biochem Cell Biol, 2012,44(3):461–464

    Article  CAS  PubMed  Google Scholar 

  27. Fu D, Wakabayashi Y, Ido Y, et al. Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1. J Cell Sci, 2010,123(Pt 9):3294–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moniaux N, Lacaze L, Gothland A, et al. Cyclin-dependent kinase inhibitors p21 and p27 function as critical regulators of liver regeneration following 90% hepatectomy in the rat. World J Hepatol, 2020,12(12):1198–1210

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wirsching A, Eberhardt C, Wurnig MC, et al. Transient steatosis assessed by magnetic resonance imaging predicts outcome after extended hepatectomy in mice. Am J Surg, 2018,216(4):658–665

    Article  PubMed  Google Scholar 

  30. Nagano Y, Nagahori K, Kamiyama M, et al. Improved functional reserve of hypertrophied contra lateral liver after portal vein ligation in rats. J Hepatol, 2002,37(1):72–77

    Article  PubMed  Google Scholar 

  31. Geier A, Trautwein C. Bile acids are “homeotrophic” sensors of the functional hepatic capacity and regulate adaptive growth during liver regeneration. Hepatology, 2007,45(1):251–253

    Article  PubMed  Google Scholar 

  32. Fu D, Mitra K, Sengupta P, et al. Coordinated elevation of mitochondrial oxidative phosphorylation and autophagy help drive hepatocyte polarization. Proc Natl Acad Sci U S A, 2013,110(18):7288–7293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jansen M, ten Klooster JP, Offerhaus GJ, et al. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism. Physiolo Rev, 2009,89(3):777–798

    Article  CAS  Google Scholar 

  34. King RS, Newmark PA. The cell biology of regeneration. J Cell Biol, 2012,196(5):553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol, 2011,21(4):212–218

    Article  CAS  PubMed  Google Scholar 

  36. Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol, 2004,5(10):836–847

    Article  CAS  PubMed  Google Scholar 

  37. Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol, 2019,161:1–13

    Article  CAS  PubMed  Google Scholar 

  38. Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018,360(6391):eaan5931

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kong B, Zhang M, Huang M, et al. FXR deficiency alters bile acid pool composition and exacerbates chronic alcohol induced liver injury. Dig Liver Dis, 2019,51(4):570–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Boer JF, Verkade E, Mulder NL, et al. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J Lipid Res, 2020,61(3):291–305

    Article  CAS  PubMed  Google Scholar 

  41. Bidault-Jourdainne V, Merlen G, Glénisson M, et al. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Rep, 2020,3(2):100214

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol, 2015,62(1 Suppl):S25–S37

    Article  CAS  PubMed  Google Scholar 

  43. Hertl M, Harvey PR, Swanson PE, et al. Evidence of preservation injury to bile ducts by bile salts in the pig and its prevention by infusions of hydrophilic bile salts. Hepatology, 1995,21(4):1130–1137

    Article  CAS  PubMed  Google Scholar 

  44. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol, 2020,318(3):G554–G573

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guicciardi ME, Gores GJ. Cholestatic hepatocellular injury: what do we know and how should we proceed. J Hepatol, 2005,42(3):297–300

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei He or Wei-zheng Ren.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This work was supported by the Natural Science Foundation of Beijing Municipality (No. 7194317).

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Xl., Zhang, X., Li, Ch. et al. Bile Acid Overload Induced by Bile Duct and Portal Vein Ligation Improves Survival after Staged Hepatectomy in Rats. CURR MED SCI 43, 1013–1022 (2023). https://doi.org/10.1007/s11596-023-2779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2779-5

Key words

Navigation