Skip to main content
Log in

Causal Association Between Tea Consumption and Gout: A Mendelian Randomization Study

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Evidence from prospective studies on the consumption of tea and risk of gout is conflicting and limited. We aimed to investigate the potential causal effects of tea intake on gout using Mendelian randomization (MR).

Methods

Genome-wide association studies in UK Biobank included 349 376 individuals and successfully discovered single-nucleotide polymorphisms linked to consumption of one cup of tea per day. Summary statistics from the Chronic Kidney Disease Genetics consortium included 13 179 cases and 750 634 controls for gout. Two-sample MR analyses were used to evaluate the relationship between tea consumption and gout risk. The inverse-variance weighted (IVW) method was used for primary analysis, and sensitivity analyses were also conducted to validate the potential causal effect.

Results

In this study, the genetically predicted increase in tea consumption per cup was associated with a lower risk of gout in the IVW method (OR: 0.90; 95% CI: 0.82–0.98). Similar results were found in weighted median methods (OR: 0.88; 95% CI: 0.78–1.00), while no significant associations were found in MR-Egger (OR: 0.89; 95% CI: 0.71–1.11), weighted mode (OR: 0.80; 95% CI: 0.65–0.99), and simple mode (OR: 1.01; 95% CI: 0.75–1.36). In addition, no evidence of pleiotropy was detected by MR-Egger regression (P=0.95) or MR-PRESSO analysis (P=0.07).

Conclusion

This study provides evidence for the daily consumption of an extra cup of tea to reduce the risk of gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DALYs GBD, Collaborators H. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018,392(10159):1859–1922

    Article  Google Scholar 

  2. Li Q, Li X, Wang J, et al. Diagnosis and treatment for hyperuricemia and gout: a systematic review of clinical practice guidelines and consensus statements. BMJ Open, 2019,9(8):e026677

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh JA, Gaffo A. Gout epidemiology and comorbidities. Semin Arthritis Rheum, 2020,50(3S):S11–S16

    Article  PubMed  Google Scholar 

  4. Zhang W, Doherty M, Bardin T, et al. EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee For International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis, 2006,65(10):1312–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai L, Zhou JB, Zhou T, et al. Incident gout and weight change patterns: A retrospective cohort study of US adults. Arthritis Res Ther, 2021,23(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rho YH, Lu N, Peloquin CE, et al. Independent impact of gout on the risk of diabetes mellitus among women and men: A population-based, BMI-matched cohort study. Ann Rheum Dis, 2016,75(1):91–95

    Article  PubMed  Google Scholar 

  7. Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum, 2007,58(1):26–35

    Article  Google Scholar 

  8. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med, 2005,143(7):499–516

    Article  CAS  PubMed  Google Scholar 

  9. Choi HK, Atkinson K, Karlson EW, et al. Purine-rich foods, dairy and protein intake, and the risk of gout in men. New Engl J Med, 2004,350(11):1093–1103

    Article  CAS  PubMed  Google Scholar 

  10. Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet, 2004,363(9417):1277–1281

    Article  PubMed  Google Scholar 

  11. Choi HK, Atkinson K, Karlson EW, et al. Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med, 2005,165(7):742–748

    Article  PubMed  Google Scholar 

  12. Choi HK, Curhan G. Beer, liquor, wine, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2004,51(6):1023–1029

    Article  PubMed  Google Scholar 

  13. Huang HY, Appel LJ, Choi MJ, et al. The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial. Arthritis Rheum, 2005,52(6):1843–1847

    Article  CAS  PubMed  Google Scholar 

  14. Choi HK, Liu S, Curhan G. Intake of purine-rich foods, protein, dairy products, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2005,52(1):283–289

    Article  PubMed  Google Scholar 

  15. Choi HK, Ford ES, Li C, et al. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2007,57(1):109–115

    Article  PubMed  Google Scholar 

  16. Choi HK, Ford ES. Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med, 2007,120:442–447

    Article  PubMed  Google Scholar 

  17. Choi HK, Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2007,57(5):816–821

    Article  CAS  PubMed  Google Scholar 

  18. Gao X, Curhan G, Forman JP, et al. Vitamin C intake and serum uric acid concentration in men. J Rheumatol, 2008,35(9):1853–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao X, Qi L, Qiao N, et al. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension, 2007,50(2):306–312

    Article  CAS  PubMed  Google Scholar 

  20. Williams PT. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am J Clin Nutr, 2008,87(5):1480–1487

    Article  CAS  PubMed  Google Scholar 

  21. Choi JW, Ford ES, Gao X, et al. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum, 2008,59(1):109–116

    Article  CAS  PubMed  Google Scholar 

  22. Choi HK, Curhan G. Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. Br Med J, 2008,336(7639):309–312

    Article  Google Scholar 

  23. Nguyen S, Choi HK, Lustig RH, et al. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J Pediatr, 2009,154(6):807–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi HK, Gao X, Curhan G. Vitamin C intake and the risk of gout in men: a prospective study. Arch Intern Med, 2009,169(5):502–507

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gaeini Z, Bahadoran Z, Mirmiran P, et al. Tea, coffee, caffeine intake and the risk of cardio-metabolic outcomes: findings from a population with low coffee and high tea consumption. Nutr Metab (Lond), 2019,16:28

    Article  PubMed  Google Scholar 

  26. Choi HK, Willett W, Curhan G. Coffee consumption and risk of incident gout in men: a prospective study. Arthritis Rheum, 2007,56(6):2049–2055

    Article  CAS  PubMed  Google Scholar 

  27. Choi HK, Curhan G. Coffee consumption and risk of incident gout in women: the Nurses’ Health Study. Am J Clin Nutr, 2010,92(4):922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bahorun T, Luximon-Ramma A, Gunness TK, et al. Black tea reduces uric acid and C-reactive protein levels in humans susceptible to cardiovascular diseases. Toxicology, 2010,278(1):68–74

    Article  CAS  PubMed  Google Scholar 

  29. Teng GG, Tan CS, Santosa A, et al. Serum urate levels and consumption of common beverages and alcohol among Chinese in Singapore. Arthritis Care Res (Hoboken), 2013,65(9):1432–1440

    Article  CAS  PubMed  Google Scholar 

  30. Beyl RN Jr, Hughes L, Morgan S. Update on Importance of Diet in Gout. Am J Med, 2016,129(11):1153–1158

    Article  PubMed  Google Scholar 

  31. Stephen B, Thompson SG. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation. London: Chapman and Hall/CRC (2015).

    Google Scholar 

  32. Larsson SC. Mendelian randomization as a tool for causal inference in human nutrition and metabolism. Curr Opin Lipidol, 2021,32(1):1–8

    Article  CAS  PubMed  Google Scholar 

  33. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature, 2015,526(7571):68–74

    Article  Google Scholar 

  34. Shim H, Chasman DI, Smith JD, et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One, 2015,10:e0120758

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol, 2011,40(4):740–752

    Article  PubMed  Google Scholar 

  36. Tin A, Marten J, Halperin Kuhns VL, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet, 2019,51(10):1459–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res, 2007,16(4):309–330

    Article  PubMed  Google Scholar 

  38. Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol, 2018,47(1):358

    Article  PubMed  Google Scholar 

  39. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013,37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in mendelian randomization studies. Hum Mol Genet, 2018,27(R2):R195–R208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016,40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hartwig FP, Davey Smith G. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol, 2017,46(6):1985–1998

    Article  PubMed  PubMed Central  Google Scholar 

  43. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013,37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen Y, Luo L, Hu S, et al. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr, 2023,63(24):7065–7090

    Article  CAS  PubMed  Google Scholar 

  45. da Silva Pinto M. Tea: a new perspective on health benefits. Sci Pireit, 2013,53(2):558–567

    CAS  Google Scholar 

  46. Fang J, Sureda A, Silva AS, et al. Trends of tea in cardiovascular health and disease: a critical review. Trends Food Sci Technol, 2019,88:385–396

    Article  CAS  Google Scholar 

  47. Chen G, Tan ML, Li KK, et al. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. J Ethnopharmacol, 2015,175:14–20

    Article  CAS  PubMed  Google Scholar 

  48. Jhang JJ, Lu CC, Yen GC. Epigallocatechin gallate inhibits urate crystals-induced peritoneal inflammation in C57BL/6 mice. Mol Nutr Food Res, 2016,60(10):2297–2303

    Article  CAS  PubMed  Google Scholar 

  49. Han M, Zhao G, Wang Y, et al. Safety and anti-hyperglycemic efficacy of various tea types in mice. Sci Rep, 2016,6:31703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiao J, Kong X, Kong A, et al. Pharmacokinetics and biotransformation of tea polyphenols. Curr Drug Metab, 2014,15(1):30–36

    Article  CAS  PubMed  Google Scholar 

  51. Aucamp J, Gaspar A, Hara Y, et al. Inhibition of xanthine oxidase by catechins from tea (Camellia sinensis). Anticancer Res, 1997,17(6D):4381–4385

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-ying Huang or Wen-ze Xiao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This work was supported by grants from the Natural Science Foundation of China (No. 82102199) and the General Program of Shanghai Municipal Commission of Health and Family Planning (No. 202040479).

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Yn., Zhang, H. et al. Causal Association Between Tea Consumption and Gout: A Mendelian Randomization Study. CURR MED SCI 43, 947–954 (2023). https://doi.org/10.1007/s11596-023-2778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2778-6

Key words

Navigation