Skip to main content
Log in

Roles of MT-ND1 in Cancer

  • Review
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

The energy shift toward glycolysis is one of the hallmarks of cancer. Complex I is a vital enzyme complex necessary for oxidative phosphorylation. The mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1 (MT-ND1) is the largest subunit coded by mitochondria of complex I. The present study summarizes the structure and biological function of MT-ND1. From databases and literature, the expressions and mutations of MT-ND1 in a variety of cancers have been reviewed. MT-ND1 may be a biomarker for cancer diagnosis and prognosis. It is also a potential target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naithani S, Saracco SA, Butler CA, et al. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell, 2003,14(1):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lenka N, Vijayasarathy C, Mullick J, et al. Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex. Prog Nucleic Acid Res Mol Biol, 1998,61:309344

    Google Scholar 

  3. Gazizova, N, Rakhmatullina D, Minibayeva F. Effect of respiratory inhibitors on mitochondrial complexes and ADP/ATP translocators in the Triticum aestivum roots. Plant Physiol Biochem, 2020,151:601–607

    Article  CAS  PubMed  Google Scholar 

  4. Giulivi, C, Zhang YF, Omanska-Klusek A, et al. Mitochondrial dysfunction in autism. JAMA, 2010,304(21):2389–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Holzknecht M, Guerrero-Navarro L, Petit M, et al. The mitochondrial enzyme FAHD1 regulates complex II activity in breast cancer cells and is indispensable for basal BT-20 cells in vitro. FEBS Lett, 2022,596(21):2781–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baracca A, Solaini G, Sgarbi G, et al. Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch Neurol, 2005,62(5):730–736

    Article  PubMed  Google Scholar 

  7. Huoponen, K. Leber hereditary optic neuropathy: clinical and molecular genetic findings. Neurogenetics, 2001,3(3):119–125

    Article  CAS  PubMed  Google Scholar 

  8. Lin J, Zhao CB, Lu JH, et al. Novel mutations m.3959G>A and m.3995A>G in mitochondrial gene MT-ND1 associated with MELAS. Mitochondrial DNA, 2014,25(1):56–62

    Article  CAS  PubMed  Google Scholar 

  9. Lenaz G, Baracca A, Carelli V, et al. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta, 2004,1658(1–2):89–94

    Article  CAS  PubMed  Google Scholar 

  10. Mitchell AL, Elson JL, Howell N, et al. Sequence variation in mitochondrial complex I genes: mutation or polymorphism? J Med Genet, 2006,43(2):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simon DK, Friedman J, Breakefield XO, et al. A heteroplasmic mitochondrial complex I gene mutation in adult-onset dystonia. Neurogenetics, 2003,4(4):199–205

    Article  CAS  PubMed  Google Scholar 

  12. Jin X, Zhang J, Yi Q, et al. Leber’s Hereditary Optic Neuropathy Arising From the Synergy Between ND1 3635G>A Mutation and Mitochondrial YARS2 Mutations. Invest Ophthalmol Vis Sci, 2021,62(7):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin Y, Xu X, Zhao D, et al. A novel m.11406 T > A mutation in mitochondrial ND4 gene causes MELAS syndrome. Mitochondrion, 2020,54:57–64

    Article  CAS  PubMed  Google Scholar 

  14. Cieslik M, Czapski GA, Wójtowicz S, et al. Alterations of Transcription of Genes Coding Anti-oxidative and Mitochondria-Related Proteins in Amyloid beta Toxicity: Relevance to Alzheimer’s Disease. Mol Neurobiol, 2020,57(3):1374–1388

    Article  CAS  PubMed  Google Scholar 

  15. Anderson WM, Fisher RR. The subunit structure of bovine heart mitochondrial transhydrogenase. Biochim Biophys Acta, 1981,635(1):194–199

    Article  CAS  PubMed  Google Scholar 

  16. Wallace DC. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci U S A, 1994,91(19):8739–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Montoya J, Lopez-Perez MJ. Mitochondrial heterogeneity in Aspergillus nidulans: in vivo protein biosynthetic activities of the mitochondrial populations. Rev Esp Fisiol, 1980,36(4):427–431

    PubMed  Google Scholar 

  18. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature, 1981,290(5806):470–474

    Article  CAS  PubMed  Google Scholar 

  19. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021,71(3):209–249

    Article  PubMed  Google Scholar 

  20. Huang X, Zhu X, Yu Y, et al. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett, 2021,501:66–82

    Article  CAS  PubMed  Google Scholar 

  21. Akouchekian M, Houshmand M, Akbari MH, et al. Analysis of mitochondrial ND1 gene in human colorectal cancer. J Res Med Sci, 2011,16(1):50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kassem AM, El-Guendy N, Tantawy M, et al. Mutational hotspots in the mitochondrial D-loop region of cancerous and precancerous colorectal lesions in Egyptian patients. DNA Cell Biol, 2011,30(11):899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yusnita Y, Norsiah MD, Rahman AJ. Mutations in mitochondrial NADH dehydrogenase subunit 1 (mtND1) gene in colorectal carcinoma. Malays J Pathol, 2010,32(2):103–110

    PubMed  Google Scholar 

  24. Koshikawa N, Akimoto M, Hayashi JI, et al. Association of predicted pathogenic mutations in mitochondrial ND genes with distant metastasis in NSCLC and colon cancer. Sci Rep, 2017,7(1):15535

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weerts MJA, Timmermans EC, van de Stolpe A, et al. Tumor-Specific Mitochondrial DNA Variants Are Rarely Detected in Cell-Free DNA. Neoplasia, 2018,20(7):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu Y, Zhou J, Yuan Q, et al. Quantitative detection of circulating MT-ND1 as a potential biomarker for colorectal cancer. Bosn J Basic Med Sci, 2021,21(5):577–586

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pinheiro M, Veiga I, Pinto C, et al. Mitochondrial genome alterations in rectal and sigmoid carcinomas. Cancer Lett, 2009,280(1):38–43

    Article  CAS  PubMed  Google Scholar 

  28. Habano W, Nakamura S, Sugai T. Microsatellite instability in the mitochondrial DNA of colorectal carcinomas: evidence for mismatch repair systems in mitochondrial genome. Oncogene, 1998,17(15):1931–1937

    Article  CAS  PubMed  Google Scholar 

  29. Wallace L, Mehrabi S, Bacanamwo M, et al. Expression of mitochondrial genes MT-ND1, MT-ND6, MT-CYB, MT-COI, MT-ATP6, and 12S/MT-RNR1 in colorectal adenopolyps. Tumour Biol, 2016,37(9):12465–12475

    Article  CAS  PubMed  Google Scholar 

  30. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature, 2000,406(6797):747–52

    Article  CAS  PubMed  Google Scholar 

  31. Jahani MM, Azimi Meibody A, Karimi T, et al. An A10398G mitochondrial DNA alteration is related to increased risk of breast cancer, and associates with Her2 positive receptor. Mitochondrial DNA A DNA Mapp Seq Anal, 2020,31(1):11–16

    CAS  PubMed  Google Scholar 

  32. Thapa S, Lalrohlui F, Ghatak S, et al. Mitochondrial complex I and V gene polymorphisms associated with breast cancer in mizo-mongloid population. Breast Cancer, 2016,23(4):607–616

    Article  PubMed  Google Scholar 

  33. Parrella P, Xiao Y, Fliss M, et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res, 2001,61(20):7623–7626

    CAS  PubMed  Google Scholar 

  34. Grzybowska-Szatkowska L, Slaska B. Mitochondrial NADH dehydrogenase polymorphisms are associated with breast cancer in Poland. J Appl Genet, 2014,55(2):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srigley JR, Delahunt B, Eble JN, et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol, 2013,37(10):1469–1489

    Article  PubMed  Google Scholar 

  36. Kim H, Komiyama T, Inomoto C, et al. Mutations in the Mitochondrial ND1 Gene Are Associated with Postoperative Prognosis of Localized Renal Cell Carcinoma. Int J Mol Sci, 2016,17(12):2049

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim H, Komiyama T, Nitta M, et al. D-loop Mutations in Renal Cell Carcinoma Improve Predictive Accuracy for Cancer-Related Death by Integrating with Mutations in the NADH Dehydrogenase Subunit 1 Gene. Genes (Basel), 2019,10(12):998

    Article  CAS  PubMed  Google Scholar 

  38. Mayr JA, Meierhofer D, Zimmermann F, et al. Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma. Clin Cancer Res, 2008,14(8):2270–2275

    Article  CAS  PubMed  Google Scholar 

  39. Schutte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma—epidemiological trends and risk factors. Dig Dis, 2009,27(2):80–92

    Article  PubMed  Google Scholar 

  40. Li W, Qi Y, Cui X, et al. Heteroplasmy and Copy Number Variations of Mitochondria in 88 Hepatocellular Carcinoma Individuals. J Cancer, 2017,8(19):4011–4017

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yin PH, Wu CC, Lin JC, et al. Somatic mutations of mitochondrial genome in hepatocellular carcinoma. Mitochondrion, 2010,10(2):174–182

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Tan D, Wong LJ. Somatic mutation detection in complete mitochondrial DNA of lung cancer patients. Zhongguo Fei Ai Za Zhi (Chinese), 2004,7(2):125–129

    CAS  Google Scholar 

  43. Wang L, Wang J, Jia E, et al. Plasma RNA sequencing of extracellular RNAs reveals potential biomarkers for non-small cell lung cancer. Clin Biochem, 2020,83:65–73

    Article  CAS  PubMed  Google Scholar 

  44. Maximo V, Sobrinho-Simoes M. Hurthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch, 2000,437(2):107–115

    Article  CAS  PubMed  Google Scholar 

  45. Maxim V, Soares P, Lima J, et al. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am J Pathol, 2002,160(5):1857–1865

    Article  Google Scholar 

  46. Xu B, Reznik E, Tuttle RM, et al. Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features. Endocrine, 2019,64(1):97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porcelli AM, Ghelli A, Ceccarelli C, et al. The genetic and metabolic signature of oncocytic transformation implicates HIF1alpha destabilization. Hum Mol Genet, 2010,19(6):1019–1032

    Article  CAS  PubMed  Google Scholar 

  48. Bonora E, Porcelli AM, Gasparre G, et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res, 2006,66(12):6087–6096

    Article  CAS  PubMed  Google Scholar 

  49. Jiang Z, Bahr T, Zhou C, et al. Diagnostic value of circulating cell-free mtDNA in patients with suspected thyroid cancer: ND4/ND1 ratio as a new potential plasma marker. Mitochondrion, 2020,55:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maximo V, Soares P, Seruca R, et al. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer, 2001,32(2):136–143

    Article  CAS  PubMed  Google Scholar 

  51. Ghidini M, Lampis A, Mirchev MB, et al. Immune-Based Therapies and the Role of Microsatellite Instability in Pancreatic Cancer. Genes (Basel), 2020,12(1):33

    Article  PubMed  Google Scholar 

  52. Jones JB, Song JJ, Hempen PM, et al. Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass”-ive advantage over detection of nuclear DNA mutations. Cancer Res, 2001,61(4):1299–1304

    CAS  PubMed  Google Scholar 

  53. Okada T, Mizukami Y, Ono Y, et al. Digital PCR-based plasma cell-free DNA mutation analysis for early-stage pancreatic tumor diagnosis and surveillance. J Gastroenterol, 2020,55(12):1183–1193

    Article  CAS  PubMed  Google Scholar 

  54. Warowicka A, Wolun-Cholewa M, Kwasniewska A, et al. Alternations in mitochondrial genome in carcinogenesis of HPV positive cervix. Exp Mol Pathol, 2020,117:104530

    Article  CAS  PubMed  Google Scholar 

  55. Jarviaho T, Hurme-Niiranen A, Soini HK, et al. Novel non-neutral mitochondrial DNA mutations found in childhood acute lymphoblastic leukemia. Clin Genet, 2018,93(2):275–285

    Article  CAS  PubMed  Google Scholar 

  56. Linnartz B, Anglmayer R, Zanssen S. Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes. Cancer Res, 2004,64(6):1966–1971

    Article  CAS  PubMed  Google Scholar 

  57. Iommarini L, Kurelac I, Capristo M, et al. Different mtDNA mutations modify tumor progression in dependence of the degree of respiratory complex I impairment. Hum Mol Genet, 2014,23(6):1453–1466

    Article  CAS  PubMed  Google Scholar 

  58. Guney AI, Ergec DS, Tavukcu HH, et al. Detection of mitochondrial DNA mutations in nonmuscle invasive bladder cancer. Genet Test Mol Biomarkers, 2012,16(7):672–678

    Article  CAS  PubMed  Google Scholar 

  59. Dmitrenko V, Shostak K, Boyko O, et al. Reduction of the transcription level of the mitochondrial genome in human glioblastoma. Cancer Lett, 2005,218(1):99–107

    Article  CAS  PubMed  Google Scholar 

  60. Jerónimo C, Nomoto S, Caballero OL, et al. Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 2001,20(37):5195–5198

    Article  PubMed  Google Scholar 

  61. Guerra F, Kurelac I, Cormio A, et al. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet, 2011,20(12):2394–2405

    Article  CAS  PubMed  Google Scholar 

  62. Tsuji A, Akao T, Masuya T, et al. IACS-010759, a potent inhibitor of glycolysis-deficient hypoxic tumor cells, inhibits mitochondrial respiratory complex I through a unique mechanism. J Biol Chem, 2020,295(21):7481–7491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lomeli N, Di K, Pearre DC, et al. Mitochondrial-associated impairments of temozolomide on neural stem/progenitor cells and hippocampal neurons. Mitochondrion, 2020,52:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Q, Sun Y, Fei Z, et al. Leptin promotes fatty acid oxidation and OXPHOS via the c-Myc/PGC-1 pathway in cancer cells. Acta Biochim Biophys Sin (Shanghai), 2019,51(7):707–714

    Article  CAS  PubMed  Google Scholar 

  65. Ji S, Zheng Z, Liu S, et al. Resveratrol promotes oxidative stress to drive DLC1 mediated cellular senescence in cancer cells. Exp Cell Res, 2018,370(2):292–302

    Article  CAS  PubMed  Google Scholar 

  66. Sitarek P, Synowiec E, Kowalczyk T, et al. An In Vitro Estimation of the Cytotoxicity and Genotoxicity of Root Extract from Leonurus sibiricus L. Overexpressing AtPAP1 against Different Cancer Cell Lines. Molecules, 2018,23(8):2049

    Article  PubMed  PubMed Central  Google Scholar 

  67. Skala E, Synowiec E, Kowalczyk T, et al. Rhaponticum carthamoides Transformed Root Extract Has Potent Anticancer Activity in Human Leukemia and Lung Adenocarcinoma Cell Lines. Oxid Med Cell Longev, 2018,2018:8198652

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu Z, Ren B, Wang Y, et al. Sesamol Induces Human Hepatocellular Carcinoma Cells Apoptosis by Impairing Mitochondrial Function and Suppressing Autophagy. Sci Rep, 2017,7:45728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tendi EA, Bosetti F, Dasgupta SF, et al. Ginkgo biloba extracts EGb 761 and bilobalide increase NADH dehydrogenase mRNA level and mitochondrial respiratory control ratio in PC12 cells. Neurochem Res, 2002,27(4):319–323

    Article  CAS  PubMed  Google Scholar 

  70. Sripada L, Singh K, Lipatova AV, et al. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells. J Mol Med (Berl), 2017,95(6):641–651

    Article  CAS  PubMed  Google Scholar 

  71. Greene J, Segaran A, Lord S. Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications. Semin Cancer Biol, 2022,86 (Pt 2):851–859

    Article  CAS  PubMed  Google Scholar 

  72. Sriramkumar S, Sood R, Huntington TD, et al. Platinum-induced mitochondrial OXPHOS contributes to cancer stem cell enrichment in ovarian cancer. J Transl Med, 2022,20(1):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jonckheere AI, Smeitink JA, Rodenburg RJ. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis, 2012,35(2):211–225

    Article  CAS  PubMed  Google Scholar 

  74. Shen J, Wan J, Song R, et al. Peripheral blood mitochondrial DNA copy number, length heteroplasmy and breast cancer risk: a replication study. Carcinogenesis, 2015,36(11):1307–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Thyagarajan B, Wang R, Barcelo H, et al. Mitochondrial copy number is associated with colorectal cancer risk. Cancer Epidemiol Biomarkers Prev, 2012,21(9):1574–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee JS, Ko YG, Shin KJ, et al. Mitochondrial DNA 4977bp deletion mutation in peripheral blood reflects atrial remodeling in patients with non-valvular atrial fibrillation. Yonsei Med J, 2015,56(1):53–61

    Article  CAS  PubMed  Google Scholar 

  77. Tan BH, Skipworth RJ, Stephens NA, et al. Frequency of the mitochondrial DNA 4977bp deletion in oesophageal mucosa during the progression of Barrett’s oesophagus. Eur J Cancer, 2009,45(5):736–740

    Article  CAS  PubMed  Google Scholar 

  78. Shaik NA, Lone WG, Khan IA, et al. Detection of somatic mutations and germline polymorphisms in mitochondrial DNA of uterine fibroids patients. Genet Test Mol Biomarkers, 2011,15(7–8):537–541

    Article  CAS  PubMed  Google Scholar 

  79. Gasparre G, Kurelac I, Capristo M, et al. A mutation threshold distinguishes the antitumorigenic effects of the mitochondrial gene MTND1, an oncojanus function. Cancer Res, 2011,71(19):6220–6229

    Article  CAS  PubMed  Google Scholar 

  80. Duan K, Liu ZJ, Hu SQ, et al. Lactic acid induces lactate transport and glycolysis/OXPHOS interconversion in glioblastoma. Biochem Biophys Res Commun, 2018,503(2):888–894

    Article  CAS  PubMed  Google Scholar 

  81. Gasparre G, Iommarini L, Porcelli AM, et al. An inherited mitochondrial DNA disruptive mutation shifts to homoplasmy in oncocytic tumor cells. Hum Mutat, 2009,30(3):391–396

    Article  CAS  PubMed  Google Scholar 

  82. Schöller E, Marks J, Marchand V, et al. Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Mol Cell, 2021,81(23):4810–4825

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-chun Xu or Jun-song Han.

Ethics declarations

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Additional information

The present study was supported by National Natural Science Foundation of China (No. 82203232), Scientific Instrument Field Project of Shanghai Science and Technology Commission (No. 22142202700) and Shanghai Rising-Star Program (No. 19QB1404700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Yc., Su, J., Zhou, Jj. et al. Roles of MT-ND1 in Cancer. CURR MED SCI 43, 869–878 (2023). https://doi.org/10.1007/s11596-023-2771-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2771-0

Key words

Navigation