Skip to main content
Log in

Hypoxia Affects Autophagy in Human Umbilical Vein Endothelial Cells via the IRE1 Unfolded Protein Response

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to investigate the role of the unfolded protein response, specifically the inositol-requiring enzyme 1 (IRE1) signaling pathway, in hypoxia-induced autophagy in human umbilical venous endothelial cells (HUVECs).

Methods

The expression of IRE1 and autophagy relative protein in HUVECs with hypoxia was explored by Western blotting, qRT-PCR and confocal microscopy. Further, we evaluated the biological effects of HUVECs by tube formation assay and wound healing assay in vitro. Finally, we examined the function of IRE1 in local blood vessels through animal models.

Results

Hypoxia activated the IRE1 signaling pathway and induced autophagy in a time-dependent manner in HUVECs and further influenced the biological effects of HUVECs. Intraperitoneal injection of IRE1 inhibitors inhibited local vascular autophagy levels and lipid accumulation in model animals.

Conclusion

Hypoxia can induce autophagy and activate the IRE1 signaling pathway in HUVECs and the IRE1 signaling pathway is involved in autophagy in hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016,118(4):620–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poznyak AV, Nikiforov NG, Wu WK, et al. Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells, 2021,10(2):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao BZ, Han BZ, Zeng YX, et al. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin, 2016,37(2):150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases. EMBO J, 2021,40(19): e108863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res, 2015,59(3):292–307

    Article  PubMed  Google Scholar 

  6. Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol, 2006,26(24):9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di M, Wang L, Li M, et al. Dickkopf1 destabilizes atherosclerotic plaques and promotes plaque formation by inducing apoptosis of endothelial cells through activation of ER stress. Cell Death Dis, 2017,8(7):e2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JW, Ko J, Ju C, et al. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med, 2019,51(6):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arnaud C, Bochaton T, Pépin JL, et al. Obstructive sleep apnoea and cardiovascular consequences: Pathophysiological mechanisms. Arch Cardiovasc Dis, 2020,113(5):350–358

    Article  PubMed  Google Scholar 

  10. Hultén LM, Levin M. The role of hypoxia in atherosclerosis. Curr Opin Lipidol, 2009,20(5):409–414

    Article  PubMed  Google Scholar 

  11. Guo Q, Jin S, Hu H, et al. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun, 2017,493(1):346–351

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Binder P, Fang Q, et al. Endoplasmic reticulum stress in the heart: insights into mechanisms and drug targets. Br J Pharmacol, 2018,175(8):1293–1304

    Article  CAS  PubMed  Google Scholar 

  13. Lindholm D, Korhonen L, Eriksson O, et al. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol, 2017,5:48

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li T, Jiang S, Lu C, et al. Snapshots: Endoplasmic Reticulum Stress in Lipid Metabolism and Cardiovascular Disease. Curr Issues Mol Biol, 2018,28:14–28

    Article  PubMed  Google Scholar 

  15. Perrotta I, Aquila S. The role of oxidative stress and autophagy in atherosclerosis. Oxid Med Cell Longev, 2015:130315

  16. Sasaki Y, Ikeda Y, Iwabayashi M, et al. The Impact of Autophagy on Cardiovascular Senescence and Diseases. Int Heart J, 2017,58(5):666–673

    Article  CAS  PubMed  Google Scholar 

  17. Marsch E, Sluimer JC, Daemen MJ. Hypoxia in atherosclerosis and inflammation. Curr Opin Lipidol, 2013,24(5):393–400

    Article  CAS  PubMed  Google Scholar 

  18. Guo FX, Hu YW, Zheng L, et al. Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis. DNA Cell Biol, 2017,36(5):335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fong GH. Potential contributions of intimal and plaque hypoxia to atherosclerosis. Curr Atheroscler Rep, 2015,17(6):510

    Article  PubMed  Google Scholar 

  20. Tang V, Fu S, Rayner BS, et al. 8-Chloroadenosine induces apoptosis in human coronary artery endothelial cells through the activation of the unfolded protein response. Redox Biol, 2019,26:101274

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang S, Wu M, Li X, et al. Role of Endoplasmic Reticulum Stress in Atherosclerosis and Its Potential as a Therapeutic Target. Oxid Med Cell Longev, 2020:9270107

  22. Qiu ZL, Zhang JP, Guo XC. Endoplasmic reticulum stress and vascular endothelial cell apoptosis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao (Chinese), 2014,36(1):102–107

    CAS  Google Scholar 

  23. Mialet-Perez J, Vindis C. Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem, 2017,61(6):721–732

    Article  PubMed  Google Scholar 

  24. Henderson JM, Weber C, Santovito D. Beyond Self-Recycling: Cell-Specific Role of Autophagy in Atherosclerosis. Cells, 2021,10(3):625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 2001,107(7):81–91

    Article  Google Scholar 

  26. Grandjean JMD, Madhavan A, Cech L, et al. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol, 2020,16(10):1052–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu C, Yan DY, Wang C, et al. IRE1 signaling pathway mediates protective autophagic response against manganese-induced neuronal apoptosis in vivo and in vitro. Sci Total Environ, 2020,712:136480

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y, Brandizzi F. IRE1: ER stress sensor and cell fate executor. Trends Cell Biol, 2013,23(11):547–555

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Zhong or Jing Wan.

Ethics declarations

We declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

This study was supported by the National Natural Science Foundation of China (No. 81670409).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Zq., Wei, Bz., Zhao, M. et al. Hypoxia Affects Autophagy in Human Umbilical Vein Endothelial Cells via the IRE1 Unfolded Protein Response. CURR MED SCI 43, 689–695 (2023). https://doi.org/10.1007/s11596-023-2749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2749-y

Key words

Navigation