Skip to main content
Log in

Donor-derived CD19 CAR-T Cells versus Chemotherapy Plus Donor Lymphocyte Infusion for Treatment of Recurrent CD19-positive B-ALL After Allogeneic Hematopoietic Stem Cell Transplantation

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

This study aimed to compare the efficacy of anti-CD19 chimeric antigen receptor T cells (CAR-T cells) versus chemotherapy plus donor lymphocyte infusion (chemo-DLI) for treating relapsed CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Methods

Clinical data of 43 patients with B-ALL who relapsed after allo-HSCT were retrospectively analyzed. Twenty-two patients were treated with CAR-T cells (CAR-T group), and 21 with chemotherapy plus DLI (chemo-DLI group). The complete remission (CR) and minimal residual disease (MRD)-negative CR rates, leukemia-free survival (LFS) rate, overall survival (OS) rate, and incidence of acute graft-versus-host disease (aGVHD), cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) were compared between the two groups.

Results

The CR and MRD-negative CR rates in the CAR-T group (77.3% and 61.5%) were significantly higher than those in the chemo-DLI group (38.1% and 23.8%) (P=0.008 and P=0.003). The 1- and 2-year LFS rates in the CAR-T group were superior to those in the chemo-DLI group: 54.5% and 50.0% vs. 9.5% and 4.8% (P=0.0001 and P=0.00004). The 1- and 2-year OS rates in the CAR-T versus chemo-DLI group were 59.1% and 54.5% vs. 19% and 9.5% (P=0.011 and P=0.003). Six patients (28.6%) with grade 2–4 aGVHD were identified in the chemo-DLI group. Two patients (9.1%) in the CAR-T group developed grade 1–2 aGVHD. Nineteen patients (86.4%) developed CRS in the CAR-T group, comprising grade 1–2 CRS in 13 patients (59.1%) and grade 3 CRS in 6 patients (27.3%). Two patients (9.1%) developed grade 1–2 ICANS.

Conclusion

Donor-derived anti-CD19 CAR-T-cell therapy may be better, safer, and more effective than chemo-DLI for B-ALL patients who relapse after allo-HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosko A, Wang HL, de Lima M, et al. Reduced intensity conditioned allograft yields favorable survival for older adults with B-cell acute lymphoblastic leukemia. Am J Hematol, 2017,92(1):42–49

    Article  CAS  PubMed  Google Scholar 

  2. Shimoni A. Relapse of acute leukemia after a second allogeneic stem-cell transplantation; Is there any hope for cure? Bone Marrow Transplant, 2022,57(3):336–337

    Article  PubMed  Google Scholar 

  3. Collins RHJ, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol, 1997,15(2):433–444

    Article  PubMed  Google Scholar 

  4. Gökbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood, 2012,120(10):2032–2041

    Article  PubMed  Google Scholar 

  5. Zeidan AM, Forde PM, Symons H, et al. HLA-Haploidentical Donor Lymphocyte Infusions for Patients with Relapsed Hematologic Malignancies after Related HLA-Haploidentical Bone Marrow Transplantation. Biol Blood Marrow Transplant, 2014,20(3):314–318

    Article  CAS  PubMed  Google Scholar 

  6. Ghiso A, Raiola AM, Gualandi F, et al. DLI after haploidentical BMT with post-transplant CY. Bone Marrow Transplant, 2015,50(1):56–61

    Article  CAS  PubMed  Google Scholar 

  7. Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol, 2016,14(10):802–808

    PubMed  PubMed Central  Google Scholar 

  8. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest, 2016,126(9):3363–3376

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood, 2016,127(26):3321–3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood, 2016,127(26):3312–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 2014,371(16):1507–1517

    Article  PubMed  PubMed Central  Google Scholar 

  12. Singh N, Perazzelli J, Grupp SA, et al. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med, 2016,8(320):320ra323

    Article  Google Scholar 

  13. Zhang C, Wang XQ, Zhang RL, et al. Donor-derived CD19 CAR-T cell therapy of relapse of CD19-positive B-ALL post allotransplant. Leukemia, 2021,35(6):1563–1570

    Article  CAS  PubMed  Google Scholar 

  14. Zhang C, Kong PY, Li S, et al. Donor-derived CAR-T Cells Serve as a Reduced-intensity Conditioning Regimen for Haploidentical Stem Cell Transplantation in Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia: Case Report and Review of the Literature. J Immunother, 2018,41(6):306–311

    Article  PubMed  Google Scholar 

  15. Lee DW, Santomasso BD, Locke FL, et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biol Blood Marrow Transplant, 2019,25(4):625–638

    Article  CAS  PubMed  Google Scholar 

  16. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant, 2015,21(3):389–401

    Article  PubMed  Google Scholar 

  17. Chinese consensus on the diagnosis and management of chronic graft-versus-host disease (2021). Zhonghua Xue Ye Xue Za Zhi (Chinese), 2021,42(4):265–275

  18. Roddie C, Peggs KS. Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther, 2011,11(4):473–487

    Article  PubMed  Google Scholar 

  19. Kolb HJ. Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood, 2008,112(12):4371–4383

    Article  CAS  PubMed  Google Scholar 

  20. Collins RH, Jr., Goldstein S, Giralt S, et al. Donor leukocyte infusions in acute lymphocytic leukemia. Bone Marrow Transplant, 2000,26(5):511–516

    Article  PubMed  Google Scholar 

  21. Jacoby E, Bielorai B, Avigdor A, et al. Locally produced CD19 CAR T cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol, 2018,93(12):1485–1492

    Article  CAS  PubMed  Google Scholar 

  22. Park JH, Rivière I, Gonen M, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med, 2018,378(5):449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Cheng Y, Suo P, et al. Donor-derived CD19-targeted T cell infusion induces minimal residual disease-negative remission in relapsed B-cell acute lymphoblastic leukaemia with no response to donor lymphocyte infusions after haploidentical haematopoietic stem cell transplantation. Br J Haematol, 2017,179(4):598–605

    Article  CAS  PubMed  Google Scholar 

  24. Hua J, Zhang J, Zhang X, et al. Donor-derived anti-CD19 CAR T cells compared with donor lymphocyte infusion for recurrent B-ALL after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant, 2021,56(5):1056–1064

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh A, Smith M, James SE, et al. Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nat Med, 2017,23(2):242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anwer F, Shaukat AA, Zahid U, et al. Donor origin CAR T cells: graft versus malignancy effect without GVHD, a systematic review. Immunotherapy, 2017,9(2):123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med, 2018,378(5):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev, 2019,34:45–55

    Article  CAS  PubMed  Google Scholar 

  29. Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol, 2018,183(3):364–374

    Article  CAS  PubMed  Google Scholar 

  30. Al Malki MM, Aldoss I, Stiller T, et al. Outcome of Second Allogeneic Hematopoietic Cell Transplantation in Patients With Acute Lymphoblastic Leukemia. Clin Lymphoma Myeloma and Leuk, 2016,16(9):519–522

    Article  Google Scholar 

  31. Haen SP, Groh C, Schumm M, et al. Haploidentical hematopoietic cell transplantation using in vitro T cell depleted grafts as salvage therapy in patients with disease relapse after prior allogeneic transplantation. Ann Hematol, 2017,96(5):817–827

    Article  PubMed  Google Scholar 

  32. Nagler A, Labopin M, Dholaria B, et al. Second allogeneic stem cell transplantation in patients with acute lymphoblastic leukaemia: a study on behalf of the Acute Leukaemia Working Party of the European Society for Blood and Marrow Transplantation. Br J Haematol, 2019,186(5):767–776

    Article  PubMed  Google Scholar 

  33. Ruutu T, de Wreede LC, van Biezen A, et al. Second allogeneic transplantation for relapse of malignant disease: retrospective analysis of outcome and predictive factors by the EBMT. Bone Marrow Transplant, 2015,50(12):1542–1550

    Article  CAS  PubMed  Google Scholar 

  34. Schneidawind C, Hagmaier V, Faul C, et al. Second allogeneic hematopoietic cell transplantation enables long-term disease-free survival in relapsed acute leukemia. Ann Hematol, 2018,97(12):2491–2500

    Article  CAS  PubMed  Google Scholar 

  35. Christopeit M, Kuss O, Finke J, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol, 2013,31(26):3259–3271

    Article  PubMed  Google Scholar 

  36. Shah NN, Lee DW, Yates B, et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults With B-ALL. J Clin Oncol, 2021,39(15):1650–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frey NV, Shaw PA, Hexner EO, et al. Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. J Clin Oncol. 2020,38(5):415–422

    Article  CAS  PubMed  Google Scholar 

  38. Jiang H, Li C, Yin P, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia: An open-label pragmatic clinical trial. Am J Hematol, 2019,94(10):1113–1122

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xi Zhang or Shi-feng Lou.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 82020108004), the Hospital-level Clinical Innovation Military-Civilian Special Project of Army Medical University (No. 2018JSLC0020), Chongqing Science and Technology Innovation Leading Talent (No. CSTCCXLJRC201718), and Natural Science Foundation of Chongqing Innovation Group Science Program (No. cstc2021jcyj-cxttX0001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Wang, Xq., Zhang, C. et al. Donor-derived CD19 CAR-T Cells versus Chemotherapy Plus Donor Lymphocyte Infusion for Treatment of Recurrent CD19-positive B-ALL After Allogeneic Hematopoietic Stem Cell Transplantation. CURR MED SCI 43, 733–740 (2023). https://doi.org/10.1007/s11596-023-2746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2746-1

Key words

Navigation