Skip to main content

Advertisement

Log in

Joint Detection of Serum Vitamin D, Body Mass Index, and Tumor Necrosis Factor Alpha for the Diagnosis of Crohn’s Disease

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Vitamin D (VD) deficiency was reported to contribute to the progression of Crohn’s disease (CD) and affect the prognosis of CD patients. This study investigated the role of serum VD, body mass index (BMI), and tumor necrosis factor alpha (TNF-α) in the diagnosis of Crohn’s disease.

Methods

CD patients (n=76) and healthy subjects (n=76) were enrolled between May 2019 and December 2020. The serum 25-hydroxyvitamin D [25(OH)D] levels, BMI, and TNF-α levels, together with other biochemical parameters, were assessed before treatment. The diagnostic efficacy of the single and joint detection of serum 25(OH)D, BMI, and TNF-α was determined using receiver operating characteristic (ROC) curves.

Results

The levels of 25(OH) D, BMI, and nutritional indicators, including hemoglobin, total protein, albumin, and high-density lipoprotein cholesterol, were much lower, and the TNF-α levels were much higher in the CD patients than in the healthy subjects (P<0.05 for all). The areas under the ROC curve for the single detection of 25(OH)D, BMI, and TNF-α were 0.887, 0.896, and 0.838, respectively, with the optimal cutoff values being 20.64 ng/mL, 19.77 kg/m2, and 6.85 fmol/mL, respectively. The diagnostic efficacy of the joint detection of 25(OH)D, BMI, and TNF-α was the highest, with an area under the ROC curve of 0.988 (95%CI: 0.968–1.000).

Conclusion

The joint detection of 25(OH)D, TNF-α, and BMI showed high sensitivity, specificity, and accuracy in CD diagnosis; thus, it would be effective for the diagnosis of CD in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torres J, Mehandru S, Colombel JF, et al. Crohn’s disease. Lancet 2017,389(10080):1741–1755

    Article  PubMed  Google Scholar 

  2. Baumgart DC, Sandborn WJ. Crohn’s disease, Lancet, 2012, 80(9853):1590–1605

    Article  Google Scholar 

  3. Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology 2013,145(1):158–165

    Article  PubMed  Google Scholar 

  4. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012,142(1):46–54

    Article  PubMed  Google Scholar 

  5. Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol 2014,20(1):91–99

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu C, Merrill C, Medellin A, et al. Bowel Ultrasound State of the Art: Grayscale and Doppler Ultrasound, Contrast Enhancement, and Elastography in Crohn Disease. J Ultrasound Med 2019,38(2):271–288

    Article  PubMed  Google Scholar 

  7. Taylor SA, Mallett S, Bhatnagar G, et al. Magnetic resonance enterography compared with ultrasonography in newly diagnosed and relapsing Crohn’s disease patients: the METRIC diagnostic accuracy study. Health Technol Assess 2019,23(42):1–162

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rosen CJ. Clinical practice. Vitamin D insufficiency. N Engl J Med 2011,364(3):248–254

    Article  CAS  PubMed  Google Scholar 

  9. Sherman MH, Yu RT, Engle DD, et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 2014,159(1):80–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson LA, Sauder KL, Rodansky ES, et al. CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts. Exp Mol Pathol 2012,93(1):91–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abramovitch S, Dahan-Bachar L, Sharvit E, et al. Vitamin D inhibits proliferation and profibrotic marker expression in hepatic stellate cells and decreases thioacetamide-induced liver fibrosis in rats. Gut 2011,60(12):1728–1737

    Article  CAS  PubMed  Google Scholar 

  12. Frigstad SO, Høivik M, Jahnsen J, et al. Vitamin D deficiency in inflammatory bowel disease: prevalence and predictors in a Norwegian outpatient population. Scand J Gastroenterol 2017,52(1):100–106

    Article  CAS  PubMed  Google Scholar 

  13. Kabbani TA, Koutroubakis IE, Schoen RE, et al. Association of Vitamin D Level With Clinical Status in Inflammatory Bowel Disease: A 5-Year Longitudinal Study. Am J Gastroenterol 2016,111(5):712–719

    Article  CAS  PubMed  Google Scholar 

  14. de Bruyn JR, van Heeckeren R, Ponsioen CY, et al. Vitamin D deficiency in Crohn’s disease and healthy controls: a prospective case-control study in the Netherlands. J Crohns Colitis 2014,8(10):1267–1273

    Article  PubMed  Google Scholar 

  15. Jørgensen SP, Hvas CL, Agnholt J, et al. Active Crohn’s disease is associated with low vitamin D levels. J Crohns Colitis 2013,7(10):e407–e413

    Article  PubMed  Google Scholar 

  16. Nielsen OH, Rejnmark L, Moss AC. Role of Vitamin D in the Natural History of Inflammatory Bowel Disease. J Crohns Colitis 2018,12(6):742–752

    Article  PubMed  Google Scholar 

  17. Valvano M, Magistroni M, Mancusi A, et al. The Usefulness of Serum Vitamin D Levels in the Assessment of IBD Activity and Response to Biologics. Nutrients 2021,13(2):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Papadakis KA, Targan SR. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med, 2000,51:289–298

    Article  CAS  PubMed  Google Scholar 

  19. Hering NA, Fromm M, Schulzke JD. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics. J Physiol 2012,590(5):1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. John LJ, Fromm M, Schulzke JD. Epithelial barriers in intestinal inflammation. Antioxid Redox Signal 2011,15(5):1255–1270

    Article  CAS  PubMed  Google Scholar 

  21. de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 2016,13(1):13–27

    Article  CAS  PubMed  Google Scholar 

  22. Sonnenberg A, Jacobsen SJ, Wasserman IH. Periodicity of hospital admissions for inflammatory bowel disease. Am J Gastroenterol 1994,89(6):847–851

    CAS  PubMed  Google Scholar 

  23. Sandall AM, Wall CL, Lomer MCE. Nutrition Assessment in Crohn’s Disease using Anthropometric, Biochemical, and Dietary Indexes: A Narrative Review. J Acad Nutr Diet 2020,120(4):624–640

    Article  PubMed  Google Scholar 

  24. Donnellan CF, Yann LH, Lal S. Nutritional management of Crohn’s disease. Therap Adv Gastroenterol 2013,6(3):231–242

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lomer MC, Gourgey R, Whelan K. Current practice in relation to nutritional assessment and dietary management of enteral nutrition in adults with Crohn’s disease. J Hum Nutr Diet, 2014,27(Suppl 2):28–35

    Article  PubMed  Google Scholar 

  26. Liu JB, Gao X, Zhang FB, et al. The risk factor for low bone mineral density in patients with inflammatory bowel disease. Zhonghua Nei Ke Za Zhi (Chinese) 2009,48(10):833–836

    CAS  Google Scholar 

  27. Tang RH, Chao K, Zhang SH, et al. The prevalence and characteristics of anemia in Crohn’s disease in the Chinese. Zhonghua Nei Ke Za Zhi (Chinese) 2013,52(5):370–374

    CAS  Google Scholar 

  28. Yan T, Li L, Wu Q, et al. Analysis of body composition in patients with Crohn’s disease. Zhonghua Wei Chang Wai Ke Za Zhi (Chinese) 2014,17(10):981–984

    Google Scholar 

  29. Khan SS, Patil SS. Bone density in pediatric Crohn’s disease: A cross-sectional observation from South India. Indian J Gastroenterol 2017,36(3):184–188

    Article  PubMed  Google Scholar 

  30. Patsalos O, Dalton B, Leppanen J, et al. Impact of TNF-α Inhibitors on Body Weight and BMI: A Systematic Review and Meta-Analysis. Front Pharmacol, 2020, 11:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maaser C, Sturm A, Vavricka SR, et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J Crohns Colitis 2019,13(2):144–164

    Article  PubMed  Google Scholar 

  32. Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 1976,70(3):439–444

    Article  CAS  PubMed  Google Scholar 

  33. World Health Organization. Obesity: Preventing and managing the global epidemic: Report of a WHO consultation. World Health Organ Tech Rep Ser, 2000,894:1–253

    Google Scholar 

  34. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011,96(7):1911–1930

    Article  CAS  PubMed  Google Scholar 

  35. Ananthakrishnan AN, Khalili H, Higuchi LM, et al. Higher predicted vitamin D status is associated with reduced risk of Crohn’s disease. Gastroenterology 2012,142(3):482–489

    Article  CAS  PubMed  Google Scholar 

  36. Burisch J, Pedersen N, Cukovic-Cavka S, et al. Environmental factors in a population-based inception cohort of inflammatory bowel disease patients in Europe—an ECCO-EpiCom study. J Crohns Colitis 2014,8(7):607–616

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y, Cui X, Li J, et al. Clinical evaluation of vitamin D status and its relationship with disease activity and changes of intestinal immune function in patients with Crohn’s disease in the Chinese population. Scand J Gastroenterol 2021,56(1):20–29

    Article  CAS  PubMed  Google Scholar 

  38. Lu ZL, Wang TR, Qiao YQ, et al. Handgrip Strength Index Predicts Nutritional Status as a Complement to Body Mass Index in Crohn’s Disease. J Crohns Colitis 2016,10(12):1395–1400

    Article  PubMed  Google Scholar 

  39. Calvert CR, Lal S. Approaches to intestinal failure in Crohn’s disease. Proc Nutr Soc 2011,70(3):336–341

    Article  CAS  PubMed  Google Scholar 

  40. Geerling BJ, Badart-Smook A, Stockbrügger RW, et al. Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur J Clin Nutr 2000,54(6):514–521

    Article  CAS  PubMed  Google Scholar 

  41. Cioffi I, Marra M, Imperatore N, et al. Assessment of bioelectrical phase angle as a predictor of nutritional status in patients with Crohn’s disease: A cross sectional study. Clin Nutr 2020,39(5):1564–1571

    Article  PubMed  Google Scholar 

  42. de Castro MM, Corona LP, Pascoal LB, et al. Impaired nutritional status in outpatients in remission or with active Crohn’s disease—classified by objective endoscopic and imaging assessments. Clin Nutr ESPEN, 2019,33:60–65

    Article  PubMed  Google Scholar 

  43. Pallav K, Riche D, May WL, et al. Predictors of vitamin D deficiency in inflammatory bowel disease and health: A Mississippi perspective. World J Gastroenterol 2017,23(4):638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prieto JMI, Andrade AR, Magro DO, et al. Nutritional Global Status and Its Impact in Crohn’s Disease. J Can Assoc Gastroenterol 2021,4(6):290–29

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bendix-Struve M, Bartels LE, Agnholt J, et al. Vitamin D3 treatment of Crohn’s disease patients increases stimulated T cell IL-6 production and proliferation. Aliment Pharmacol Ther 2010,32(11–12):1364–1372

    Article  CAS  PubMed  Google Scholar 

  46. Liu N, Nguyen L, Chun RF, et al. Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology 2008,149(10):4799–4808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Canaff L, Hendy GN. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1beta. Role of the NF-kappaB pathway and kappaB elements. J Biol Chem 2005,280(14):14177–14188

    Article  CAS  PubMed  Google Scholar 

  48. Canaff L, Zhou X, Hendy GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem 2008,283(20):13586–13600

    Article  CAS  PubMed  Google Scholar 

  49. Joseph AJ, George B, Pulimood AB, et al. 25 (OH) vitamin D level in Crohn’s disease: association with sun exposure & disease activity. Indian J Med Res 2009,130(2):133–137

    CAS  PubMed  Google Scholar 

  50. Ulitsky A, Ananthakrishnan AN, Naik A, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. JPEN J Parenter Enteral Nutr 2011,35(3):308–316

    Article  CAS  PubMed  Google Scholar 

  51. Raftery T, Merrick M, Healy M, et al. Vitamin D Status Is Associated with Intestinal Inflammation as Measured by Fecal Calprotectin in Crohn’s Disease in Clinical Remission. Dig Dis Sci 2015,60(8):2427–2435

    Article  CAS  PubMed  Google Scholar 

  52. Jørgensen SP, Agnholt J, Glerup H, et al. Clinical trial: vitamin D3 treatment in Crohn’s disease — a randomized double-blind placebo-controlled study. Aliment Pharmacol Ther 2010,32(3):377–383

    Article  PubMed  Google Scholar 

  53. Mechie NC, Mavropoulou E, Ellenrieder V, et al. Distinct Association of Serum Vitamin D Concentration with Disease Activity and Trough Levels of Infliximab and Adalimumab during Inflammatory Bowel Disease Treatment. Digestion 2020,101(6):761–770

    Article  CAS  PubMed  Google Scholar 

  54. Hausmann J, Kubesch A, Amiri M, et al. Vitamin D Deficiency is Associated with Increased Disease Activity in Patients with Inflammatory Bowel Disease. J Clin Med 2019,8(9):1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wahl DA, Cooper C, Ebeling PR, et al. A global representation of vitamin D status in healthy populations. Arch Osteoporos, 2012,7:155–172

    Article  CAS  PubMed  Google Scholar 

  56. Hilger J, Friedel A, Herr R, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr 2014,111(1):23–45

    Article  CAS  PubMed  Google Scholar 

  57. Stenczel ND, Purcarea MR, Tribus LC, et al. The role of the intestinal ultrasound in Crohn’s disease diagnosis and monitoring. J Med Life 2021,14(3):310–315

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lin S, Wang Y, Li L, et al. A New Model Based on 25-Hydroxyvitamin D3 for Predicting Active Crohn’s Disease in Chinese Patients. Mediators Inflamm, 2018,2018:3275025

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ng WL, Collins PF, Hickling DF, et al. Evaluating the concurrent validity of body mass index (BMI) in the identification of malnutrition in older hospital inpatients. Clin Nutr 2019,38(5):2417–2422

    Article  CAS  PubMed  Google Scholar 

  60. Snijder MB, van Dam RM, Visser M, et al. Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 2005,90(7):4119–4123

    Article  CAS  PubMed  Google Scholar 

  61. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000,72(3):690–693

    Article  CAS  PubMed  Google Scholar 

  62. Lagunova Z, Porojnicu AC, Lindberg F, et al. The dependency of vitamin D status on body mass index, gender, age and season. Anticancer Res, 2009,29(9): 3713–3720

    CAS  PubMed  Google Scholar 

  63. Raftery T, O’Sullivan M. Optimal vitamin D levels in Crohn’s disease: a review. Proc Nutr Soc 2015,74(1):56–66

    Article  CAS  PubMed  Google Scholar 

  64. Elizondo-Montemayor L, Castillo EC, Rodríguez-López C, et al. Seasonal Variation in Vitamin D in Association with Age, Inflammatory Cytokines, Anthropometric Parameters, and Lifestyle Factors in Older Adults. Mediators Inflamm, 2017,2017:5719461

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank our study volunteers, the hospital staff, and the laboratory staff for their assistance in performing the studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-hong Sha, Shi-xue Dai or Wen-jun Ma.

Additional information

Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

This research was funded by Guangzhou Science and Technology Plan Projects (No. 202002020066), the Young Scientists to the NSFC Application of Guangdong Provincial People’s Hospital (No. 8210120306) and the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substance (No. SKL-BMSG2022-03).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Li, Jh., Liao, Sy. et al. Joint Detection of Serum Vitamin D, Body Mass Index, and Tumor Necrosis Factor Alpha for the Diagnosis of Crohn’s Disease. CURR MED SCI 43, 496–504 (2023). https://doi.org/10.1007/s11596-023-2741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2741-6

Key words

Navigation