Skip to main content
Log in

Construction and Verification of an RNA-Binding Protein-Associated Prognostic Model for Gliomas

  • Published:
Current Medical Science Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Objective

To construct and verificate an RNA-binding protein (RBP)-associated prognostic model for gliomas using integrated bioinformatics analysis.

Methods

RNA-sequencing and clinic pathological data of glioma patients from The Cancer Genome Atlas (TCGA) database and the Chinese Glioma Genome Atlas database (CGGA) were downloaded. The aberrantly expressed RBPs were investigated between gliomas and normal samples in TCGA database. We then identified prognosis related hub genes and constructed a prognostic model. This model was further validated in the CGGA-693 and CGGA-325 cohorts.

Results

Totally 174 differently expressed genes-encoded RBPs were identified, containing 85 down-regulated and 89 up-regulated genes. We identified five genes-encoded RBPs (ERI1, RPS2, BRCA1, NXT1, and TRIM21) as prognosis related key genes and constructed a prognostic model. Overall survival (OS) analysis revealed that the patients in the high-risk subgroup based on the model were worse than those in the low-risk subgroup. The area under the receiver operator characteristic curve (AUC) of the prognostic model was 0.836 in the TCGA dataset and 0.708 in the CGGA-693 dataset, demonstrating a favorable prognostic model. Survival analyses of the five RBPs in the CGGA-325 cohort validated the findings. A nomogram was constructed based on the five genes and validated in the TCGA cohort, confirming a promising discriminating ability for gliomas.

Conclusion

The prognostic model of the five RBPs might serve as an independent prognostic algorithm for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Keene JD. RNA regulons: coordination of posttranscriptional events. Nat Rev Genet, 2007,8(7):533–543

    Article  CAS  PubMed  Google Scholar 

  2. Turner M, Díaz-Muñoz MD. RNA-binding proteins control gene expression and cell fate in the immune system. Nat Immunol, 2018,19(2):120–129

    Article  CAS  PubMed  Google Scholar 

  3. Hentze MW, Castello A, Schwarzl T, et al. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol, 2018,19(5):327–341

    Article  CAS  PubMed  Google Scholar 

  4. Corley M, Burns MC, Yeo GW. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms. Mol Cell, 2020,78 (1):9–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bohnsack KE, Bohnsack MT. RNA-Binding Proteins Chaperone Ribonucleoprotein Complex Assembly to Solve the RNA-Folding Problem. Cell, 2019,179(6):1248–1250

    Article  CAS  PubMed  Google Scholar 

  6. Marx V. Profiling the dress codes of RNA-binding proteins. Nat Methods, 2018,15(9):655–658

    Article  CAS  PubMed  Google Scholar 

  7. Ye J, Blelloch R. Regulation of pluripotency by RNA binding proteins. Cell Stem Cell, 2014,15(3):271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chénard CA, Richard S. New implications for the QUAKING RNA binding protein in human disease. J Neurosci Res, 2008,86(2):233–242

    Article  PubMed  Google Scholar 

  9. Neelamraju Y, Gonzalez-Perez A, Bhat-Nakshatri P, et al. Mutational landscape of RNA-binding proteins in human cancers. RNA Biol, 2018,15(1):115–129

    Article  PubMed  Google Scholar 

  10. Majumder P, Chu JF, Chatterjee B, et al. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta Neuropathol, 2016,132(5):721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet, 2007,8(10):749–761

    Article  CAS  PubMed  Google Scholar 

  12. Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-oncology, 2018,20 (suppl_4): iv1–iv86

    Article  PubMed  PubMed Central  Google Scholar 

  13. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 2016,131(6):803–820

    Article  PubMed  Google Scholar 

  14. Correa BR, De Araujo PR, Qiao M, et al. Functional genomics analyses of RNA-binding proteins reveal the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome Biol, 2016,17(1):125

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cheung HC, Hai T, Zhu W, et al. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain, 2009,132(Pt 8):2277–2288

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet, 2014,15(12):829–845

    Article  CAS  PubMed  Google Scholar 

  17. Wen PY, Reardon DA. Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment. Nat Rev Neurol, 2016,12(2):69–70

    Article  CAS  PubMed  Google Scholar 

  18. Mesrati MH, Behrooz AB, Abuhamad AY, et al. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells, 2020,9(5):1236

    Article  CAS  Google Scholar 

  19. Delgado-Martín B, Medina MÁ. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. Adv Sci (Weinh), 2020,7(9):1902971

    Article  PubMed  Google Scholar 

  20. Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neurooncology, 2010,12(2):116–121

    CAS  Google Scholar 

  21. Zhang C, Moore LM, Li X, et al. IDH1/2 mutations target a key hallmark of cancer by deregulating cellular metabolism in glioma. Neuro-oncology, 2013,15(9):1114-1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siegal T. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas. Adv Tech Stand Neurosurg, 2016 (43):91–108

    Article  Google Scholar 

  23. Pereira B, Billaud M, Almeida R. RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer, 2017,3(7):506–528

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Qi J, Hou X. Systematically Dissecting the Function of RNA-Binding Proteins During Glioma Progression. Front Genet, 2019,10:1394

    Article  CAS  PubMed  Google Scholar 

  25. Cao S, Zheng J, Liu X, et al. FXR1 promotes the malignant biological behavior of glioma cells via stabilizing MIR17HG. J Exp Clin Cancer Res, 2019,38(1):37

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhao Z, Wang Y, Yun D, et al. cell migration and cell senescence in human glioma. Am J Cancer Res, 2020,10(1):114–130

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JH, Liu R, Li J, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun, 2017,8(1):949

    Article  PubMed  PubMed Central  Google Scholar 

  28. Macdonald TJ, Pollack IF, Okada H, et al. Progressionassociated genes in astrocytoma identified by novel microarray gene expression data reanalysis. Methods Mol Biol, 2007,377:203–222

    Article  CAS  PubMed  Google Scholar 

  29. Cho J, Park J, Shin SC, et al. USP47 Promotes Tumorigenesis by Negative Regulation of p53 through Deubiquitinating Ribosomal Protein S2. Cancers (Basel), 2020,12(5):1137

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen RD, Gajjar MK, Tuckova L, et al. BRCA1-regulated RRM2 expression protects glioblastoma cells from endogenous replication stress and promotes tumorigenicity. Nat Commun, 2016,7:13398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wan.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

This study was supported by the National Natural Science Foundation of China (No. 82072795).

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Chen, Zr., Zhang, Xl. et al. Construction and Verification of an RNA-Binding Protein-Associated Prognostic Model for Gliomas. CURR MED SCI 43, 156–165 (2023). https://doi.org/10.1007/s11596-022-2694-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2694-1

Key words

Navigation