Skip to main content
Log in

Newly Detected Transmission of blaKPC-2 by Outer Membrane Vesicles in Klebsiella Pneumoniae

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

The prevalence of carbapenem-resistant Klebsiella pneumoniae (CR-KP) is a global public health problem. It is mainly caused by the plasmid-carried carbapenemase gene. Outer membrane vesicles (OMVs) contain toxins and other factors involved in various biological processes, including β-lactamase and antibiotic-resistance genes. This study aimed to reveal the transmission mechanism of OMV-mediated drug resistance of Klebsiella (K.) pneumoniae.

Methods

We selected CR-KP producing K. pneumoniae carbapenemase-2 (KPC-2) to study whether they can transfer resistance genes through OMVs. The OMVs of CR-KP were obtained by ultracentrifugation, and incubated with carbapenem-sensitive K. pneumoniae for 4 h. Finally, the carbapenem-sensitive K. pneumoniae was tested for the presence of blaKPC-2 resistance gene and its sensitivity to carbapenem antibiotics.

Results

The existence of OMVs was observed by the electron microscopy. The extracted OMVs had blaKPC-2 resistance gene. After incubation with OMVs, blaKPC-2 resistance gene was detected in sensitive K. pneumoniae, and it became resistant to imipenem and meropenem.

Conclusion

This study demonstrated that OMVs isolated from KPC-2-producing CR-KP could deliver blaKPC-2 to sensitive K. pneumoniae, allowing the bacteria to produce carbapenemase, which may provide a novel target for innovative therapies in combination with conventional antibiotics for treating carbapenem-resistant Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pranavathiyani G, Prava J, Rajeev AC, et al. Novel Target Exploration from Hypothetical Proteins of Klebsiella pneumoniae MGH 78578 Reveals a Protein Involved in Host-Pathogen Interaction. Front Cell Infect Microbiol, 2020,10:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol, 2018,8:4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Jin L, Ouyang P, et al. Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: a multicentre, molecular epidemiological analysis. J Antimicrob Chemother, 2020,75(2):327–336

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Zeng J, Liu W, et al. Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China. J Infect, 2015,71(5):553–560

    Article  PubMed  Google Scholar 

  5. Sherry NL, Lane CR, Kwong JC, et al. Genomics for Molecular Epidemiology and Detecting Transmission of Carbapenemase-Producing Enterobacterales in Victoria, Australia, 2012 to 2016. J Clin Microbiol, 2019,57(9):e00573–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev, 2019,32(3):e00001–19

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gupta N, Limbago BM, Patel JB, et al. J. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis, 2011,53:60–67

    Article  PubMed  Google Scholar 

  8. Logan LK, Weinstein RA. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis, 2017, 215:S28–S36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hong J, Dauros-Singorenko P, Whitcombe A, et al. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. J Extracell Vesicles, 2019,8:1632099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 2019,17:13–24

    Article  CAS  PubMed  Google Scholar 

  11. Nevermann J, Silva A, Otero C, et al. Identification of Genes Involved in Biogenesis of Outer Membrane Vesicles (OMVs) in Salmonella enterica Serovar Typhi. Front Microbiol, 2019,10:104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rumbo C, Fernandez-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011,55:3084–3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao YT, Kuo SC, Chiang MH, et al. Acinetobacter baumannii Extracellular OXA-58 Is Primarily and Selectively Released via Outer Membrane Vesicles after Sec-Dependent Periplasmic Translocation. Antimicrob Agents Chemother, 2015,59:7346–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin J, Zhang W, Cheng J, et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun, 2017,8:14888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martora F, Pinto F, Folliero V, et al. Isolation, characterization and analysis of pro-inflammatory potential of Klebsiella pneumoniae outer membrane vesicles. Microb Pathog, 2019,136:103719

    Article  CAS  PubMed  Google Scholar 

  16. Jasim R, Han ML, Zhu Y, et al. Lipidomic Analysis of the Outer Membrane Vesicles from Paired Polymyxin-Susceptible and -Resistant Klebsiella pneumoniae Clinical Isolates. Int J Mol Sci, 2018,19(8):2356

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cahill BK, Seeley KW, Gutel D, et al. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles. Microbiol Res, 2015,180:1–10

    Article  CAS  PubMed  Google Scholar 

  18. Wu G, Ji H, Guo X, et al. Nanoparticle reinforced bacterial outer-membrane vesicles effectively prevent fatal infection of carbapenem-resistant Klebsiella pneumoniae. Nanomedicine, 2020,24:102148

    Article  CAS  PubMed  Google Scholar 

  19. Jing X, Zhou H, Min X, et al. The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli. Front Microbiol, 2018,9:2391

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jung AL, Hoffmann K, Herkt CE, et al. Legionella pneumophila Outer Membrane Vesicles: Isolation and Analysis of Their Pro-inflammatory Potential on Macrophages. J Vis Exp, 2017, (120):55146

  21. Hopkins KL, Meunier D, Naas T, et al. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother, 2018,73(12):3523–3526

    CAS  PubMed  Google Scholar 

  22. Wan D, Jing X, Zhou H, et al. Differences between meropenem and imipenem disk to detect carbapenemase in gram-negative bacilli using simplified carbapenem inactivation method. J Infect Chemother, 2020,26:636–639

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez LJ, Bahr G, Nakashige TG, et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-beta-lactamase. Nat Chem Biol, 2016,12:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee S, Mondal A, Mitra S, et al. Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. J Antimicrob Chemother, 2017,72: 2201–2207

    Article  CAS  PubMed  Google Scholar 

  25. Schaar V, Nordstrom T, Morgelin M, et al. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother, 2011,55(8):3845–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zeng.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

This work was partially supported by the National Natural Science Foundation of China (No. 31771189), the Wuhan Health Commission (No. WX18C17 and No. WX19Q31), and the Natural Science Foundation of Hubei Province, China (No. 2017CFA065 and No. WJ2019H378).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Lj., Jing, Xp., Meng, Dl. et al. Newly Detected Transmission of blaKPC-2 by Outer Membrane Vesicles in Klebsiella Pneumoniae. CURR MED SCI 43, 80–85 (2023). https://doi.org/10.1007/s11596-022-2680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2680-7

Key words

Navigation