Skip to main content
Log in

Microbiological Advances in Orthodontics: An Overview and Detailed Analysis of Temporary Anchorage Devices

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Dental biofilm is the initiating factor of oral diseases, such as periodontitis and caries. Orthodontic treatment could alter the microbiome structure balance, and increase the risk of such diseases. Furthermore, fixed appliances can induce temporary changes in the microbiome community, and the changes that clear aligners bring are smaller by comparison. Temporary anchorage devices (TADs) are skeletal anchorages that are widely used in orthodontic treatment. Microorganisms affect the occurrence and development of inflammation surrounding TADs. At present, existing researches have verified the existence of plaque biofilm on the surface of TADs, but the formation of plaque biofilm and plaque composition under different stable conditions have not been fully understood. The development of high-throughput sequencing, molecular biology experiments, and metabonomics have provided new research ideas to solve this problem. They can become an effective means to explore the microbiome surrounding TADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manuelli M, Marcolina M, Nardi N, et al. Oral mucosal complications in orthodontic treatment. Minerva Stomatol, 2019,68(2):84–88

    Article  Google Scholar 

  2. Müller LK, Jungbauer G, Jungbauer R, et al. Biofilm and Orthodontic Therapy. Monogr Oral Sci, 2021,29:201–213

    Article  Google Scholar 

  3. Yassir YA, McIntyre GT, Bearn DR. Orthodontic treatment and root resorption: an overview of systematic reviews. Eur J Orthod, 2021,43(4):442–456

    Article  Google Scholar 

  4. Freitas AO, Marquezan M, Nojima Mda C, et al. The influence of orthodontic fixed appliances on the oral microbiota: a systematic review. Dental Press J Orthod, 2014,19(2):46–55

    Article  Google Scholar 

  5. Lucchese A, Bondemark L, Marcolina M, et al. Changes in oral microbiota due to orthodontic appliances: a systematic review. J Oral Microbiol, 2018,10(1):1476645

    Article  Google Scholar 

  6. Papageorgiou SN, Xavier GM, Cobourne MT, et al. Effect of orthodontic treatment on the subgingival microbiota: A systematic review and meta-analysis. Orthod Craniofac Res, 2018,21(4):175–185

    Article  Google Scholar 

  7. Verrusio C, Iorio-Siciliano V, Blasi A, et al. The effect of orthodontic treatment on periodontal tissue inflammation: A systematic review. Quintessence Int, 2018,49(1):69–77

    Google Scholar 

  8. Alfuriji S, Alhazmi N, Alhamlan N, et al. The effect of orthodontic therapy on periodontal health: a review of the literature. Int J Dent, 2014,2014:585048

    Article  Google Scholar 

  9. Papadopoulos MA, Papageorgiou SN, Zogakis IP. Clinical effectiveness of orthodontic miniscrew implants: a meta-analysis. J Dent Res, 2011,90(8):969–976

    Article  Google Scholar 

  10. Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol, 2018,16(7): 410–422

    Article  Google Scholar 

  11. Liu YX, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell, 2021,12(5):315–330

    Article  Google Scholar 

  12. Willis JR, Gabaldon T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms, 2020,8(2):308

    Article  Google Scholar 

  13. Guo R, Lin Y, Zheng Y, et al. The microbial changes in subgingival plaques of orthodontic patients: a systematic review and meta-analysis of clinical trials. BMC Oral Health, 2017,17(1):90

    Article  Google Scholar 

  14. Koopman JE, van der Kaaij NC, Buijs MJ, et al. The Effect of Fixed Orthodontic Appliances and Fluoride Mouthwash on the Oral Microbiome of Adolescents — A Randomized Controlled Clinical Trial. PLoS One, 2015,10(9):e0137318

    Article  Google Scholar 

  15. Guo R, Liu H, Li X, et al. Subgingival Microbial Changes During the First 3 Months of Fixed Appliance Treatment in Female Adult Patients. Curr Microbiol, 2019,76(2):213–221

    Article  Google Scholar 

  16. Kado I, Hisatsune J, Tsuruda K, et al. The impact of fixed orthodontic appliances on oral microbiome dynamics in Japanese patients. Sci Rep, 2020,10(1):21989

    Article  Google Scholar 

  17. Weir T. Clear aligners in orthodontic treatment. Aust Dent J, 2017,62(Suppl 1):58–62

    Article  Google Scholar 

  18. Levrini L, Mangano A, Montanari P, et al. Periodontal health status in patients treated with the Invisalign(®) system and fixed orthodontic appliances: A 3 months clinical and microbiological evaluation. Eur J Dent, 2015,9(3):404–410

    Article  Google Scholar 

  19. Guo R, Zheng Y, Liu H, et al. Profiling of subgingival plaque biofilm microbiota in female adult patients with clear aligners: a three-month prospective study. PeerJ, 2018,6:e4207

    Article  Google Scholar 

  20. Zhao R, Huang R, Long H, et al. The dynamics of the oral microbiome and oral health among patients receiving clear aligner orthodontic treatment. Oral Dis, 2020,26(2):473–483

    Article  Google Scholar 

  21. Antoszewska-Smith J, Sarul M, Lyczek J, et al. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: A systematic review and meta-analysis. Am J Orthod Dentofacial Orthop, 2017,151(3):440–455

    Article  Google Scholar 

  22. Alharbi F, Almuzian M, Bearn D. Anchorage effectiveness of orthodontic miniscrews compared to headgear and transpalatal arches: a systematic review and meta-analysis. Acta Odontol Scand, 2019,77(2):88–98

    Article  Google Scholar 

  23. Chen YJ, Chang HH, Lin HY, et al. Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices. Clin Oral Implants Res, 2008,19(11):1188–1196

    Article  Google Scholar 

  24. Lai TT, Chen MH. Factors affecting the clinical success of orthodontic anchorage: Experience with 266 temporary anchorage devices. J Dent Sci, 2014,9(1):49–55

    Article  Google Scholar 

  25. Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofacial Orthop, 2012,142(5):577–595

    Article  Google Scholar 

  26. Hong SB, Kusnoto B, Kim EJ, et al. Prognostic factors associated with the success rates of posterior orthodontic miniscrew implants: A subgroup meta-analysis. Korean J Orthod, 2016,46(2):111–126

    Article  Google Scholar 

  27. Mohammed H, Wafaie K, Rizk MZ, et al. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Prog Orthod, 2018,19(1):36

    Article  Google Scholar 

  28. Araghbidikashani M, Golshah A, Nikkerdar N, et al. In-vitro impact of insertion angle on primary stability of miniscrews. Am J Orthod Dentofacial Orthop, 2016,150(3):436–443

    Article  Google Scholar 

  29. Crismani AG, Bertl MH, Celar AG, et al. Miniscrews in orthodontic treatment: review and analysis of published clinical trials. Am J Orthod Dentofacial Orthop, 2010,137(1):108–113

    Article  Google Scholar 

  30. Sharma P, Valiathan A, Sivakumar A. Success rate of microimplants in a university orthodontic clinic. ISRN Surg, 2011,2011:982671

    Article  Google Scholar 

  31. Aly SA, Alyan D, Fayed MS, et al. Success rates and factors associated with failure of temporary anchorage devices: A prospective clinical trial. J Investig Clin Dent, 2018,9(3):e12331

    Article  Google Scholar 

  32. Bearn DR, Alharbi F. British Orthodontic Society national audit of temporary anchorage devices (TADs): report of the first thousand TADs placed. J Orthod, 2015,42(3):214–219

    Article  Google Scholar 

  33. Azeem M, Saleem MM, Liaquat A, et al. Failure rates of mini-implants inserted in the retromolar area. Int Orthod, 2019,17(1):53–59

    Article  Google Scholar 

  34. Chopra SS, Chakranarayan A. Clinical evaluation of immediate loading of titanium orthodontic implants. Med J Armed Forces India, 2015,71(2):165–170

    Article  Google Scholar 

  35. He W, Zhu H, Liu C. Profiles of inflammation factors and inflammatory pathways around the peri-miniscrew implant. Histol Histopathol, 2021,36(9):899–906

    Google Scholar 

  36. Andrucioli MCD, Matsumoto MAN, Fukada SY, et al. Quantification of pro-inflammatory cytokines and osteoclastogenesis markers in successful and failed orthodontic mini-implants. J Appl Oral Sci, 2019,27:e20180476

    Article  Google Scholar 

  37. Apel S, Apel C, Morea C, et al. Microflora associated with successful and failed orthodontic mini-implants. Clin Oral Implants Res, 2009,20(11):1186–1190

    Article  Google Scholar 

  38. Ferreira NO, Andrucioli MCD, Nelson-Filho P, et al. Bacterial biofilm on successful and failed orthodontic mini-implants-a scanning electron microscopy study. Microsc Res Tech, 2015,78(12):1112–1116

    Article  Google Scholar 

  39. Garcez AS, Barros LC, Fernandes MRU, et al. Fluorescence image and microbiological analysis of biofilm retained around healthy and inflamed orthodontic miniscrews. Photodiagnosis Photodyn Ther, 2020,30:101707

    Article  Google Scholar 

  40. Newman MG, Takei HH, Klokkevold PR, et al. Carranza’s clinical periodontology, Twelfth edn. St. Louis, MO: Saunders Elsevier, 2015.

    Google Scholar 

  41. Laosuwan K, Epasinghe DJ, Wu Z, et al. Comparison of biofilm formation and migration of Streptococcus mutanson tooth roots and titanium miniscrews. Clin Exp Dent Res, 2018,4(2):40–47

    Article  Google Scholar 

  42. de Freitas AO, Alviano CS, Alviano DS, et al. Microbial colonization in orthodontic mini-implants. Braz Dent J, 2012,23(4):422–427

    Article  Google Scholar 

  43. Proff P, Steinmetz I, Bayerlein T, et al. Bacterial colonisation of interior implant threads with and without sealing. Folia Morphologica, 2006,65(1):75–77

    Google Scholar 

  44. Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clin Periodontol, 1998,25(2):134–144

    Article  Google Scholar 

  45. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol, 2018,16(12):745–759

    Article  Google Scholar 

  46. Lafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and Microbial Biofilm Profiles of Peri-Implantitis: A Systematic Review. J Periodontol, 2017,88(10):1066–1089

    Article  Google Scholar 

  47. Heid CA, Stevens J, Livak KJ, et al. Real time quantitative PCR. Genome Res, 1996,6(10):986–994

    Article  Google Scholar 

  48. Goris J, Konstantinidis KT, Klappenbach JA, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol, 2007,57(Pt 1):81–91

    Article  Google Scholar 

  49. Tortamano A, Dominguez GC, Haddad AC, et al. Periodontopathogens around the surface of miniimplants removed from orthodontic patients. Angle Orthod, 2012,82(4):591–595

    Article  Google Scholar 

  50. Andrucioli MCD, Matsumoto MAN, Saraiva MCP, et al. Successful and failed mini-implants: microbiological evaluation and quantification of bacterial endotoxin. J Appl Oral Sci, 2018,26:e20170631

    Article  Google Scholar 

  51. Kirst ME, Li EC, Alfant B, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol, 2015,81(2):783–793

    Article  Google Scholar 

  52. Genco RJ, LaMonte MJ, McSkimming DI, et al. The Subgingival Microbiome Relationship to Periodontal Disease in Older Women. J Dent Res, 2019,98(9):975–984

    Article  Google Scholar 

  53. Zheng H, Xu L, Wang Z, et al. Subgingival microbiome in patients with healthy and ailing dental implants. Sci Rep, 2015,5:10948

    Article  Google Scholar 

  54. Barros SP, Williams R, Offenbacher S, et al. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol, 2000, 2016,70(1):53–64

    Article  Google Scholar 

  55. Moghaddam SF, Mohammadi A, Behroozian A. The effect of sandblasting and acid etching on survival rate of orthodontic miniscrews: a split-mouth randomized controlled trial. Prog Orthod, 2021,22(1):2

    Article  Google Scholar 

  56. Choi SH, Jang SH, Cha JY, et al. Evaluation of the surface characteristics of anodic oxidized miniscrews and their impact on biomechanical stability: An experimental study in beagle dogs. Am J Orthod Dentofacial Orthop, 2016,149(1):31–38

    Article  Google Scholar 

  57. Jang I, Choi DS, Lee JK, et al. Effect of drug-loaded TiO(2) nanotube arrays on osseointegration in an orthodontic miniscrew: an in-vivo pilot study. Biomed Microdevices, 2017,19(4):94

    Article  Google Scholar 

  58. Martins BG, de Moura VS, Fujii DN, et al. Photobiomodulation stimulates surrounding bone formation and increases stability of titanium alloy miniscrews in ovariectomized rats. Lasers Med Sci, 2022,37(7):2917–2924

    Article  Google Scholar 

  59. Alkan Ö, Kaya Y, Yüksek E, et al. Effect of Low-Level Laser Therapy on Peri-Miniscrew Fluid Prostaglandin E2 and Substance P Levels: A Controlled Clinical Trial. Turk J Orthod, 2021,34(1):26–30

    Article  Google Scholar 

  60. Michelogiannakis D, Jabr L, Barmak AB, et al. Influence of low-level-laser therapy on the stability of orthodontic mini-screw implants. A systematic review and meta-analysis. Eur J Orthod, 2022,44(1):11–21

    Article  Google Scholar 

  61. Lerario F, Roncati M, Gariffo A, et al. Non-surgical periodontal treatment of peri-implant diseases with the adjunctive use of diode laser: preliminary clinical study. Lasers Med Sci, 2016,31(1):1–6

    Article  Google Scholar 

  62. Uesugi S, Kokai S, Kanno Z, et al. Prognosis of primary and secondary insertions of orthodontic miniscrews: What we have learned from 500 implants. Am J Orthod Dentofacial Orthop, 2017,152(2):224–231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-dong Wang.

Ethics declarations

The authors declare no financial and personal relationships with other people or organizations that can inappropriately influence the work. The authors declare that they have no competing interests.

Additional information

This project is supported by the Beijing Municipal Science & Technology Commission (No. Z171100001017128), National Program for Multidisciplinary Cooperative Treatment on Major Diseases (No. PKUSSNMP-202013), National Natural Science Foundation of China (No. 81671015), and China Postdoctoral Science Foundation (No. 2020M680263).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Nr., Guo, Yn., Cui, Sj. et al. Microbiological Advances in Orthodontics: An Overview and Detailed Analysis of Temporary Anchorage Devices. CURR MED SCI 42, 1157–1163 (2022). https://doi.org/10.1007/s11596-022-2653-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2653-x

Key words

Navigation