Skip to main content
Log in

Current Status and Prospect of Stent Placement for May-Thurner Syndrome

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Stent implantation has been proven to be safe and has become the first-line intervention for May-Thurner syndrome (MTS), with satisfactory mid-term patency rates and clinical outcomes. Recent research has demonstrated that catheter-directed thrombolysis is the preferred strategy when MTS is combined with deep vein thrombosis after self-expanding stent placement. However, the stent used for the venous system was developed based on the experience obtained in the treatment of arterial disease. Consequently, relatively common corresponding complications may come along later, which include stent displacement, deformation, and obstruction. Different measures such as adopting a stent with a larger diameter, improving stent flexibility, and increasing stent strength have been employed in order to prevent these complications. The ideal venous stent is presently being evaluated and will be introduced in detail in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eliahou R, Sosna J, Bloom AI. Between a rock and a hard place: Clinical and imaging features of vascular compression syndromes. Radiographics, 2012,32(1): E33–E49

    Article  PubMed  Google Scholar 

  2. Birn J, Vedantham S. May-Thurner syndrome and other obstructive iliac vein lesions: Meaning, myth, and mystery. Vascular Medicine, 2015,20(1):74–83

    Article  PubMed  Google Scholar 

  3. Al-Omari MH, Aljarrah QM, Fataftah J, et al. Endovascular management of May-Thurner syndrome in a patient with left-sided superior vena cava: A case report. Am J Case Rep, 2019,20:713–718

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hage AN, Srinivasa RN, Abramowitz SD, et al. Endovascular iliocaval reconstruction for the treatment of iliocaval thrombosis: From imaging to intervention. Vasc Med, 2018,23(3):267–275

    Article  PubMed  Google Scholar 

  5. Park JY, Ahn JH, Jeon YS, et al. Iliac vein stenting as a durable option for residual stenosis after catheter-directed thrombolysis and angioplasty of iliofemoral deep vein thrombosis secondary to may-thurner syndrome. Phlebology, 2014,29:461–470

    Article  PubMed  Google Scholar 

  6. Ming ZB, Li WD, Yuan RF, et al. Effectiveness of catheter directed thrombolysis and stent implantation on iliofemoral vein thrombosis caused by iliac vein compression. J Thromb Thrombolysis, 2017,44(2):254–260

    Article  PubMed  Google Scholar 

  7. Knuttinen, M, Naidu, S, Oklu, R. et al. May-Thurner: Diagnosis and endovascular management. Cardiovasc Diagn Ther, 2017,7(Suppl 3):S159–S164

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hager ES, Yuo T, Tahara R, et al. Outcomes of endovascular intervention for May-Thurner syndrome. J Vasc Surg Venous Lymphat Disord, 2013,1(3):270–275

    Article  PubMed  Google Scholar 

  9. Murphy E H, Johns B, Varney, E, et al. Endovascular management of chronic total occlusions of the inferior vena cava and iliac veins. J Vasc Surg Venous Lymphat Disord, 2017,5(1):47–59

    Article  PubMed  Google Scholar 

  10. Chait J, Alsheekh A, Aurshina A, et al. Effect of venous access site on postintervention stent thrombosis for nonthrombotic iliac vein stenting. J Vasc Surg Venous Lymphat Disord, 2020,8(1):84–88

    Article  PubMed  Google Scholar 

  11. Dasari M, Avgerinos E, Raju S, et al. Outcomes of iliac vein stents after pregnancy. J Vasc Surg Venous Lymphat Disord, 2017,5(3):353–357

    Article  PubMed  Google Scholar 

  12. Shamimi-Noori SM, Clark TWI. Venous stents: Current status and future directions. Tech Vasc Interv Radiol, 2018,(2):113–116

  13. Kwak HS, Han YM, Lee YS, et al. Stents in common iliac vein obstruction with acute ipsilateral deep venous thrombosis: Early and late results. J Vasc Interv Radi, 2005,16(6):815–822

    Article  Google Scholar 

  14. Razavi MK, Jaff MR, Miller LE. Safety and effectiveness of stent placement for iliofemoral venous outflow obstruction. Circ Cardiovasc Interv, 2015,8(10): e002772

    Article  CAS  PubMed  Google Scholar 

  15. Carroll S, Moll S. Inferior Vena Cava Filters, May-Thurner syndrome, and vein stents. Circulation, 2016, 133(6):e383–e387

    Article  PubMed  Google Scholar 

  16. Ibrahim W, Al Safran Z, Hasan H, et al. Endovascular management of may-thurner syndrome. Ann Vasc Dis, 2012,5(2):217–221

    PubMed  PubMed Central  Google Scholar 

  17. Butros SR, Liu R, Oliveira GR, et al. Venous compression syndromes: Clinical features, imaging findings and management. Brit J Radio, 2013,86(1030):20130284

    Article  CAS  Google Scholar 

  18. Raju S. Treatment of iliac-caval outflow obstruction. Semin Vasc Surg, 2015,28(1):47–53

    Article  PubMed  Google Scholar 

  19. White JM, Comerota AJ. Venous compression syndromes. Vasc Endovasc Surg, 2017,51(3):155–168

    Article  Google Scholar 

  20. Sudheendra D, Vedantham S. Catheter-directed therapy options for iliofemoral venous thrombosis. Surg Clin N Am, 2018, 98(2):255–265

    Article  PubMed  Google Scholar 

  21. Raju S, Montminy ML, Thomasson JD, et al. A comparison between intravascular ultrasound and venography in identifying key parameters essential for iliac vein stenting. J Vasc Surg Venous Lymphat Disord, 2019,7(6):801–807

    Article  PubMed  Google Scholar 

  22. Stuck AK, Reich T, Engelberger RP, et al. Endovascular treatment of post-thrombotic and non-thrombotic iliofemoral venous outflow obstructions with self-expanding nitinol stents. Vasa, 2018,47(4):319–325

    Article  PubMed  Google Scholar 

  23. Funatsu, A., Anzai, H., Komiyama, K. et al. Stent implantation for May-Thurner syndrome with acute deep venous thrombosis: Acute and long-term results from the ATOMIC (AcTive stenting for May-Thurner Iliac Compression syndrome) registry. Cardiovasc Interv Ther, 2019,34:131

    Article  PubMed  Google Scholar 

  24. Ibrahim W, Al Safran Z, Hasan H, et al. Endovascular management of may-thurner syndrome. Ann Vasc Dis, 2012,5(2):217–221

    PubMed  PubMed Central  Google Scholar 

  25. Desai KR, Laws JL, Salem R, et al. Defining prolonged dwell time: When are advanced inferior vena cava filter retrieval techniques necessary? An analysis in 762 procedures. Circ Cardiovasc Interv, 2017,10(6):e003957

    Article  PubMed  Google Scholar 

  26. Kasirajan K, Gray B, Ouriel K. Percutaneous AngioJet thrombectomy in the management of extensive deep venous thrombosis. J Vasc Interv Radiol, 2001,12(2): 179–185

    Article  CAS  PubMed  Google Scholar 

  27. Iyer S, Angle JF, Uflacker A, et al. Venous compression syndromes: a review. Curr Treat Options Cardiovasc Med, 2017,19(6):45

    Article  PubMed  Google Scholar 

  28. Abdul-Haqq R, Novak Z, Pearce BJ, et al. Routine extended follow-up surveillance of iliac vein stents for iliocaval venous obstruction may not be warranted. J Vasc Surg Venous Lymphat Disord, 2017,5(4):500–505

    Article  PubMed  Google Scholar 

  29. Attaran RR, Ozdemir D, Lin I, et al. Evaluation of anticoagulant and antiplatelet therapy after iliocaval stenting: Factors associated with stent occlusion. J Vasc Surg Venous Lymphat Disord, 2019,7(4):527–534

    Article  PubMed  Google Scholar 

  30. Zucker EJ, Ganguli S, Ghoshhajra BB, et al. Imaging of venous compression syndromes. Cardiovasc Diagn Ther, 2016,6(6):519–532

    Article  PubMed  PubMed Central  Google Scholar 

  31. Knipp BS, Ferguson E, Williams DM, et al. Factors associated with outcome after interventional treatment of symptomatic iliac vein compression syndrome. J Vasc Surg, 2007,46(4):743–749

    Article  PubMed  Google Scholar 

  32. Cho H, Kim JW, Hong YS, et al. Stent Compression in iliac vein compression syndrome associated with acute ilio-femoral deep vein Thrombosis. Korean J Radiol, 2015,16(4):723–728

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lichtenberg MKW, de Graaf R, Stahlhoff WF, et al. Venovo venous stent in the treatment of non-thrombotic or post-thrombotic iliac vein lesions — short-term results from the Arnsberg venous registry. Vasa, 2019,48(2): 175–180

    Article  PubMed  Google Scholar 

  34. Chick JFB, Srinivasa RN, Cooper KJ, et al. Endovascular Iliocaval reconstruction for chronic iliocaval thrombosis: the data, where we are, and how it is done. Tech Vasc Interv Radiol, 2018,21(2):92–104

    Article  PubMed  Google Scholar 

  35. Bondarev S, Keller EJ, Han T, et al. Predictors of disease recurrence after venoplasty and stent placement for May-Thurner syndrome. J Vasc Interv Radiol, 2019,30(10):1549–1554

    Article  PubMed  Google Scholar 

  36. J Padrnos L, Garcia D. May-Thurner syndrome and thrombosis: a systematic review of antithrombotic use after endovascular stent placement. Res Pract Thromb Haemost, 2018,3(1):70–78

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lichtenberg M, De RG, Erbel C. Standards for recanalisation of chronic venous outflow obstructions. Vasa, 2018,47(4):259–266

    Article  PubMed  Google Scholar 

  38. Xu JS, Liu YJ, Zhou WM. Mid- and long-term efficacy of endovascular-based procedures for Cockett syndrome. Sci Rep, 2018,8(1):12145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yin SW, Guo LW, Bian L, et al. Evaluation of percutaneous mechanical thrombectomy via the AngioJet system combined with catheter-directed thrombolysis for the treatment of symptomatic lower extremity deep venous thrombosis. Ann Vasc Surg, 2020,65:66–71

    Article  PubMed  Google Scholar 

  40. Hage AN, Srinivasa RN, Abramowitz SD, et al. Endovascular iliocaval stent reconstruction for iliocaval thrombosis: a multi-institutional international practice pattern survey. Ann Vasc Surg, 2018,49:64–74

    Article  PubMed  Google Scholar 

  41. Moudgill N, Hager E, Gonsalves C, et al. May-Thurner syndrome: Case report and review of the literature involving modern endovascular therapy. Vascular, 2009, 17(6):330–335

    Article  PubMed  Google Scholar 

  42. Liu F, Lü P, Jin B. Catheter-directed thrombolysis for acute iliofemoral deep venous thrombosis. Ann Vasc Surg, 2011,25(5):707–715

    Article  PubMed  Google Scholar 

  43. Bu’Lock FA, Tometzki AJ, Kitchiner DJ, et al, Balloon expandable stents for systemic venous pathway stenosis late after Mustard’s operation. Heart, 1998,79(3):225–229

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tian C, Liu B, Liu J, et al. Comparison of self-expandable stents and balloon-mounted stents in the treatment of symptomatic intracranial vertebral artery atherosclerotic stenosis. Am J Transl Res, 2021,13(3):1607–1616

    PubMed  PubMed Central  Google Scholar 

  45. Wawrzyńska M, Arkowski J, Włodarczak A, et al. Functionalised Cardiovascular Stents. 3-Development of Drug-Eluting Stents (DES). Sawston: Woodhead Publishing, 2018:45–56

    Book  Google Scholar 

  46. Hulsberg PC, Mcloney E, Partovi S, et al. Minimally invasive treatments for venous compression syndromes. Cardiovasc Diagn Ther, 2016,6(6):582–592

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schwein A, Georg Y, Lejay A, et al. Endovascular treatment for venous diseases: Where are the venous stents? Methodist Debakey Cardiovasc J, 2018,14(3): 208–213

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raju S. Best management options for chronic iliac vein stenosis and occlusion. J Vasc Surg, 2013,57(4):1163–1169

    Article  PubMed  Google Scholar 

  49. Xue GH, Huang XZ, Ye M, et al. Catheter-directed thrombolysis and stenting in the treatment of iliac vein compression syndrome with acute iliofemoral deep vein thrombosis: Outcome and follow-up. Ann Vasc Surg, 2014,28(4):957–963

    Article  PubMed  Google Scholar 

  50. Mando R, Sigua-Arce P, Spencer L, et al. Slippery stents: a case report and review of the literature describing patients with May-Thurner syndrome that experienced stent migration. Case Rep Vasc Med, 2019,2019: 7606727

    PubMed  PubMed Central  Google Scholar 

  51. Elmahdy S, Shults CC, Alhaj Moustafa M. An unusual cause of acute heart failure: a case report of iliocaval venous stent migration. J Investig Med High Impact Case Rep, 2018,6:2324709618799118

    PubMed  PubMed Central  Google Scholar 

  52. Gordon BM, Fishbein MC, Levi DS. Polytetrafluo-roethylene-covered stents in the venous and arterial system: angiographic and pathologic findings in a swine model. Cardiovasc Pathol, 2008,17(4):206–211

    Article  CAS  PubMed  Google Scholar 

  53. Hsieh MJ, Huang YC, Yeh JK, et al. Predictors of long-term outcomes after drug-eluting balloon angioplasty for bare-metal stent restenosis. Heart Lung Circ, 2017, S1443950617304857

  54. Jayaraj A, Buck W, Knight A, et al. Impact of degree of stenosis in May-Thurner syndrome on iliac vein stenting. J Vasc Surg Venous Lymphat Disord, 2019,7(2):195–202

    Article  PubMed  Google Scholar 

  55. Neglén P, Raju S. In-stent recurrent stenosis in stents placed in the lower extremity venous outflow tract. J Vasc Surg, 2004,39(1):181–187

    Article  PubMed  Google Scholar 

  56. Radaideh Q, Patel NM, Shammas NW. Iliac vein compression: Epidemiology, diagnosis and treatment. Vasc Health Risk Manag, 2019,15:115–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khairy SA, Neves RJ, Hartung O, et al. Factors associated with contralateral deep venous thrombosis after iliocaval venous stenting. J Vasc Surg, 2018,67(1):358–359

    Article  Google Scholar 

  58. Erben Y, Bjarnason H, Oladottir GL, et al. Endovascular recanalization for nonmalignant obstruction of the inferior vena cava. J Vasc Surg Venous Lymphat Disord, 2018,6(2):173–182

    Article  PubMed  Google Scholar 

  59. Jayaraj A, Powell T, Raju S. Utility of the 50% stenosis criterion for patients undergoing stenting for chronic iliofemoral venous obstruction. J Vasc Surg Venous Lymphat Disord, 2021,9(6):1408–1415

    Article  PubMed  Google Scholar 

  60. Raju S, Ward M Jr, Kirk O. A modification of iliac vein stent technique. Ann Vasc Surg, 2014,28(6):1485–1492

    Article  PubMed  Google Scholar 

  61. Bu’Lock FA, Tometzki AJ, Kitchiner DJ, et al. Balloon expandable stents for systemic venous pathway stenosis late after Mustard’s operation. Heart, 1998,79(3):225–229

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ward CJ, Mullins CE, Nihill MR, et al. Use of intravascular stents in systemic venous and systemic venous baffle obstructions. Short-term follow-up results. Circulation, 1995,91(12):2948–2954

    Article  CAS  PubMed  Google Scholar 

  63. Murphy EH, Johns B, Varney E, et al. Deep venous thrombosis associated with caval extension of iliac stents. J Vasc Surg Venous Lymphat Disord, 2017,5(1):8–17

    Article  PubMed  Google Scholar 

  64. van Vuuren TM, de Wolf MA, Wittens CH. Relevance of flexibility versus radial force in rigid versus more flexible venous stents? Phlebology, 2019,34(7):459–465

    Article  PubMed  Google Scholar 

  65. Baquet M, Nef H, Gori T, et al. Restenosis patterns after bioresorbable vascular scaffold implantation: Angiographic substudy of the GHOST-EU registry. Catheter Cardiovasc Interv, 2018,92(2):276–282

    Article  PubMed  Google Scholar 

  66. Shen D, Qi H, Lin W, et al. PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-µm-thick metallic struts and tunable multistage biodegradation function. Sci Adv, 2021,7(23):eabf0614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ni L, Chen H, Luo Z, et al. Bioresorbable vascular stents and drug-eluting stents in treatment of coronary heart disease: a meta-analysis. J Cardiothorac Surg, 2020,15(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  68. Abdullah K, Bou Dargham B, Steinbrecher M, et al. Drug-eluting stents for treatment of peripheral artery disease. Am J Cardiovascular Drugs, 2018,18(3):175–180

    Article  CAS  Google Scholar 

  69. Lichtenberg M, Breuckmann F, Stahlhoff WF, et al. Placement of closed-cell designed venous stents in a mixed cohort of patients with chronic venous outflow obstructions — short-term safety, patency, and clinical outcomes. Vasa, 2018,47(6):475–481

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lü.

Additional information

Conflict of Interest Statement

The authors have declared that they have no conflicts of interest.

This work was supported by grants from the National Natural Science Foundation of China (No. 81670512 and No. 81101042) and the Natural Science Foundation of Hubei Province, China (No. 2016CFB378).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, F., Lü, P. et al. Current Status and Prospect of Stent Placement for May-Thurner Syndrome. CURR MED SCI 41, 1178–1186 (2021). https://doi.org/10.1007/s11596-021-2481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2481-4

Key words

Navigation