Skip to main content
Log in

Protective Effect of Hydroxysafflor Yellow A against Chronic Mild Stress-induced Memory Impairments by Suppressing Tau Phosphorylation in Mice

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Chronic stress plays a critical role in the etiology of sporadic Alzheimer’s disease (AD). However, there are currently no effective drugs that can target chronic stress to prevent AD. In this study, we explored the neuroprotective effect of hydroxysafflor yellow A (HSYA) against chronic mild stress (CMS)-induced memory impairments in mice and the underlying mechanism. The Morris water maze test showed that HSYA significantly reduced CMS-induced learning and memory impairments in mice. HSYA increased the expression of brain-derived neurotrophic factor (BDNF) and activated downstream tropomyosin-related kinase B (TrkB) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B(Akt)/mammalian target of rapamycin (mTOR) signaling. HSYA decreased the expression of regulator of calcineurin 1-1L (RCAN1-1L) that could promote the activity of glycogen synthase kinase-3β (GSK-3β). HSYA also attenuated tau phosphorylation by inhibiting the activity of GSK-3β and cyclin-dependent kinase-5 (Cdk5). Our data indicated that HSYA has protective effects against CMS-induced BDNF downregulation, tau phosphorylation and memory impairments. HSYA may be a promising therapeutic candidate for AD by targeting chronic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laferla FM, Oddo S. Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med, 2005,11(4):170–176

    Article  CAS  PubMed  Google Scholar 

  2. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science, 2006,314(5800):777–781

    Article  CAS  PubMed  Google Scholar 

  3. Moceri VM, Kukull WA, Emanuel I, et al. Early-life risk factors and the development of Alzheimer’s disease. Neurology, 2000,54(2):415–420

    Article  CAS  PubMed  Google Scholar 

  4. Sotiropoulos I, Catania C, Pinto LG, et al. Stress Acts Cumulatively to Precipitate Alzheimer’s Disease-Like Tau Pathology and Cognitive Deficits. J Neurosci, 2011, 31(21):7840–7847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duman RS, Monteggia LM. A Neurotrophic Model for Stress-Related Mood Disorders. Biol Psychiat, 2006, 59(12):1116–1127

    Article  CAS  PubMed  Google Scholar 

  6. Johansson L, Skoog I, Gustafson DR, et al. Midlife psychological distress associated with late-life brain atrophy and white matter lesions: a 32-year population study of women. Psychosom Med, 2012,74(2):120–125

    Article  PubMed  Google Scholar 

  7. Norton MC, Smith KR, Østbye T, et al. Early Parental Death and Remarriage of Widowed Parents as Risk Factors for Alzheimer Disease. Am J Geriat Psychiat, 2011,19(9):814–824

    Article  Google Scholar 

  8. Carroll JC, Iba M, Bangasser DA, et al. Chronic Stress Exacerbates Tau Pathology, Neurodegeneration, and Cognitive Performance through a Corticotropin-Releasing Factor Receptor-Dependent Mechanism in a Transgenic Mouse Model of Tauopathy. J Neurosci, 2011,31(40):14436–14449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ermak G, Pritchard MA, Dronjak S, et al. Do RCAN1 proteins link chronic stress with neurodegeneration? FASEB J, 2011,25(10):3306–3311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Kan H, Yin Y, et al. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol Biochem Be, 2014,120:73–81

    Article  CAS  Google Scholar 

  11. Hennebelle M, Champeil-Potokar G, Lavialle M, et al. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus. Nutr Rev, 2014,72(2):99–112

    Article  PubMed  Google Scholar 

  12. Lu Y, Luo Y, He Z, et al. Hydroxysafflor Yellow A Ameliorates Homocysteine-Induced Alzheimer-Like Pathologic Dysfunction and Memory/Synaptic Disorder. Rejuv Res, 2013,16(6):446–452

    Article  CAS  Google Scholar 

  13. Zhu H, Wang Z, Ma C, et al. Neuroprotective effects of hydroxysafflor yellow A: in vivo and in vitro studies. Planta Med, 2003,69(5):429–433

    Article  CAS  PubMed  Google Scholar 

  14. Kong SZ, Xian YF, Ip SP, et al. Protective effects of hydroxysafflor yellow A on beta-amyloid-induced neurotoxicity in PC12 cells. Neurochem Res, 2013, 38(5):951–960

    Article  CAS  PubMed  Google Scholar 

  15. Cuadrado-Tejedor M, Ricobaraza A, Del Río J, et al. Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behav Brain Res, 2011,220(2):338–343

    Article  CAS  PubMed  Google Scholar 

  16. Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature, 1982,297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Yang W, Zhang Y, et al. Phosphodiesterase-4D Knock-down in the Prefrontal Cortex Alleviates Chronic Unpredictable Stress-Induced Depressive-Like Behaviors and Memory Deficits in Mice. Sci Rep-Uk, 2015,5:11332

    Article  Google Scholar 

  18. Solas M, Aisa B, Tordera RM, et al. Stress contributes to the development of central insulin resistance during aging: Implications for Alzheimer’s disease. Biochim Biophys Acta, 2013,1832(12):2332–2339

    Article  CAS  PubMed  Google Scholar 

  19. Luo Y, Nie Y, Shi H, et al. PTPA activates protein phosphatase-2A through reducing its phosphorylation at tyrosine-307 with upregulation of protein tyrosine phosphatase 1B. Biochim Biophys Acta, 2013,1833(5): 1235–1243

    Article  CAS  PubMed  Google Scholar 

  20. Llorens-Marã Tin MA, Jurado JN, Hernã Ndez FL, et al. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci, 2014,7(5):46

    Google Scholar 

  21. Shukla V, Skuntz S, Pant HC. Deregulated Cdk5 Activity Is Involved in Inducing Alzheimer’s Disease. Arch Med Res, 2012,43(8):655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pardon M. Therapeutic potential of some stress mediators in early Alzheimer’s disease. Exp Gerontol, 2011,46(2–3):170–173

    Article  CAS  PubMed  Google Scholar 

  23. Baglietto-Vargas D, Chen Y, Suh D, et al. Short-term modern life-like stress exacerbates Aβ-pathology and synapse loss in 3xTg-AD mice. J Neurochem, 2015, 134(5):915–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marin M, Lord C, Andrews J, et al. Chronic stress, cognitive functioning and mental health. Neurobiol Learn Mem, 2011,96(4):583–595

    Article  PubMed  Google Scholar 

  25. Luo J, Zhang L, Ning N, et al. Neotrofin reverses the effects of chronic unpredictable mild stress on behavior via regulating BDNF, PSD-95 and synaptophysin expression in rat. Behav Brain Res, 2013,253:48–53

    Article  CAS  PubMed  Google Scholar 

  26. Srivareerat M, Tran TT, Alzoubi K H, et al. Chronic Psychosocial Stress Exacerbates Impairment of Cognition and Long-Term Potentiation in β-Amyloid Rat Model of Alzheimer’s Disease. Biol Psychiat, 2009, 65(11):918–926

    Article  CAS  PubMed  Google Scholar 

  27. Alberini CM. Unwind: Chronic Stress Exacerbates the Deficits of Alzheimer’s Disease. Biol Psychiat, 2009, 65(11):916–917

    Article  PubMed  Google Scholar 

  28. Kunimoto S, Nakamura S, Wada K, et al. Chronic stress-mutated presenilin 1 gene interaction perturbs neurogenesis and accelerates neurodegeneration. Exp Neurol, 2010,221(1):175–185

    Article  CAS  PubMed  Google Scholar 

  29. Alkadhi KA, Srivareerat M, Tran TT. Intensification of long-term memory deficit by chronic stress and prevention by nicotine in a rat model of Alzheimer’s disease. Mol Cell Neurosci, 2010,45(3):289–296

    Article  CAS  PubMed  Google Scholar 

  30. Rothman SM, Herdener N, Camandola S, et al. 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol Aging, 2012,33(4):830–831

    Article  PubMed  Google Scholar 

  31. Tran TT, Srivareerat M, Alkadhi KA. Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer’s disease. Neurobiol Dis, 2010,37(3):756–763

    Article  CAS  PubMed  Google Scholar 

  32. Elizalde N, Gil-Bea FJ, Ramírez MJ, et al. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: effect of antidepressant treatment. Psychopharmacology, 2008,199(1):1–14

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Chen S, Chen X, et al. ERK-dependent brain-derived neurotrophic factor regulation by hesperidin in mice exposed to chronic mild stress. Brain Res Bull, 2016,124:40–47

    Article  CAS  PubMed  Google Scholar 

  34. Lin YT, Liu TY, Yang CY, et al. Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation. Psychoneuroendocrino, 2016,71:73–85

    Article  CAS  Google Scholar 

  35. Ayuob NN. Evaluation of the antidepressant-like effect of musk in an animal model of depression: how it works. Anat Sci Int, 2017,92:539–552

    Article  PubMed  Google Scholar 

  36. Lin Y, Lin S, Chen W, et al. Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol, 2016,187:57–65

    Article  PubMed  Google Scholar 

  37. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol, 2014,220:223–50

    Article  CAS  PubMed  Google Scholar 

  38. Issa G, Wilson C, Terry AV, et al. An inverse relationship between cortisol and BDNF levels in schizophrenia: Data from human postmortem and animal studies. Neurobiol Dis, 2010,39(3):327–333

    Article  CAS  PubMed  Google Scholar 

  39. Corrêa MS, Vedovelli K, Giacobbo BL, et al. Psychophysiological correlates of cognitive deficits in family caregivers of patients with Alzheimer Disease. Neuroscience, 2015,286:371–382

    Article  PubMed  Google Scholar 

  40. Vinberg M, Trajkovska V, Bennike B, et al. The BDNF Val66Met polymorphism: Relation to familiar risk of affective disorder, BDNF levels and salivary cortisol. Psychoneuroendocrinology, 2009,34(9):1380–1389

    Article  CAS  PubMed  Google Scholar 

  41. Ali MR, Abo-Youssef AM, Messiha BA, et al. Tempol and perindopril protect against lipopolysaccharide-logy induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn Schmiedebergs Arch Pharmacol, 2016,389(6):637–656

    Article  PubMed  Google Scholar 

  42. Şahin TD, Karson A, Balcı F, et al. TNF-alpha inhibition prevents cognitive decline and maintains hippocampal BDNF levels in the unpredictable chronic mild stress rat model of depression. Behav Brain Res, 2015,292:233–240

    Article  PubMed  Google Scholar 

  43. Hua Z, Gu X, Dong Y, et al. PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma. Tumour Biol, 2016,37(12):16227–16236

    Article  CAS  Google Scholar 

  44. Zhang MW, Zhang SF, Li ZH, et al. 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neurosci Lett, 2016,635:33–38

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Xu T, Wang S, et al. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav Brain Res, 2012, 235(1):67–72

    Article  CAS  PubMed  Google Scholar 

  46. Tao W, Dong Y, Su Q, et al. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res, 2016, 308:177–186

    Article  CAS  PubMed  Google Scholar 

  47. Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol, 2015,129(2):183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fedele E, Rivera D, Marengo B, et al. Amyloid β: Walking on the dark side of the moon. Mech Ageing Dev, 2015,152:1–4

    Article  CAS  PubMed  Google Scholar 

  49. Sadigh-Eteghad S, Sabermarouf B, Majdi A, et al. Amyloid-Beta: A Crucial Factor in Alzheimer’s Disease. Med Prin Pract, 2015,24(1):1–10

    Article  Google Scholar 

  50. Wang J, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol, 2008,85(2):148–175

    Article  CAS  PubMed  Google Scholar 

  51. Mckee AC, Kosik KS, Kowall NW. Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol, 1991,30(2):156–165

    Article  CAS  PubMed  Google Scholar 

  52. Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 1992,42(3 Pt 1):631–639

    Article  CAS  PubMed  Google Scholar 

  53. Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 2010,142(3):387–397

    Article  CAS  PubMed  Google Scholar 

  54. Morris M, Maeda S, Vossel K, et al. The many faces of tau. Neuron, 2011,70(3):410–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing Endogenous Tau Ameliorates Amyloid -Induced Deficits in an Alzheimer’s Disease Mouse Model. Science, 2007,316(5825):750–754

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci, 2015,17(1):22–35

    Article  CAS  Google Scholar 

  57. Wang JZ, Xia YY, Grundke-Iqbal I, et al. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis, 2013,33(Suppl 1):S123–S139

    PubMed  Google Scholar 

  58. Jiang J, Wang Z, Qu M, et al. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β. Sci Rep-Uk, 2015,5:11765

    Article  CAS  Google Scholar 

  59. Keating DJ, Dubach D, Zanin MP, et al. DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer’s disease. Hum Mol Genet, 2007,17(7):1020–1030

    Article  Google Scholar 

  60. Cheng XS, Zhao KP, Jiang X, et al. Nmnat2 attenuates Tau phosphorylation through activation of PP2A. J Alzheimers Dis, 2013,36(1):185–195

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Luo.

Ethics declarations

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Additional information

This work was supported by the Fundamental Research Funds for the Central Universities (No. lzujbky-2016-70) and the Natural Science Foundation of Gansu Province (No. 1506RJZA235).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Q., Chen, J. et al. Protective Effect of Hydroxysafflor Yellow A against Chronic Mild Stress-induced Memory Impairments by Suppressing Tau Phosphorylation in Mice. CURR MED SCI 41, 555–564 (2021). https://doi.org/10.1007/s11596-021-2369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2369-3

Key words

Navigation