Skip to main content
Log in

AICAR and Decitabine Enhance the Sensitivity of K562 Cells to Imatinib by Promoting Mitochondrial Activity

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Although the advent of tyrosine kinase inhibitors (TKIs) has dramatically improved the survival of patients with chronic myeloid leukaemia (CML), acquired drug resistance and TKI-insensitive leukaemic stem cells (LSCs) remain major obstacles to a CML cure. In recent years, the reprogramming of mitochondrial metabolism has emerged as a hallmark of cancers, including CML, and in turn may be exploited for therapeutic purposes. Here, we investigated the effects of several drugs on the mitochondrial function of the CML cell line K562 and found that 5-aminoimidazole-4-carboxamide ribotide (AICAR) and decitabine could effectively increase the ATP content and mitochondrial biogenesis. In addition, these two drugs induced cell cycle arrest and a decrease in colony-forming capacity and promoted K562 cell differentiation. Moreover, we demonstrated that treatment with AICAR or decitabine enhanced the sensitivity of K562 cells to imatinib, as evidenced by a combination treatment assay. Altogether, our findings indicate that TKIs combined with mitochondrial regulation may provide a therapeutic strategy for the treatment of CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Rev, Cancer, 2007,7(6):441–453

    Article  CAS  Google Scholar 

  2. Sasaki K, Strom SS, O’Brien S, et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol, 2015,2(5):e186–e193

    Article  Google Scholar 

  3. Bower H, Bjorkholm M, Dickman PW, et al. Life Expectancy of Patients With Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. J Clin Oncol, 2016,34(24):2851–2857

    Article  CAS  Google Scholar 

  4. Soverini S, Mancini M, Bavaro L, et al. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol Cancer, 2018,17(1):49

    Article  Google Scholar 

  5. Chu S, Mcdonald T, Lin A, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood, 2011,118(20):5565–5572

    Article  CAS  Google Scholar 

  6. Holyoake TL, Vetrie D. The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood, 2017,129(12):1595–1606

    Article  CAS  Google Scholar 

  7. Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer, 2017,123(22):4391–4402

    Article  CAS  Google Scholar 

  8. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell, 2012,148(6):1145–1159

    Article  CAS  Google Scholar 

  9. Tennant DA, Duran RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer, 2010,10(4):267–277

    Article  CAS  Google Scholar 

  10. Warburg O. On the origin of cancer cells. Science, 1956,123(3191):309–314

    Article  CAS  Google Scholar 

  11. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006,9(6):425–434

    Article  CAS  Google Scholar 

  12. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009,324 (5930):1029–1033

    Article  Google Scholar 

  13. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab, 2016,23(1):27–47

    Article  CAS  Google Scholar 

  14. Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med, 2017,23(10):1234–1240

    Article  CAS  Google Scholar 

  15. Gottschalk S, Anderson N, Hainz C, et al. Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res, 2004,10(19):6661–6668

    Article  CAS  Google Scholar 

  16. Horibata S, Vo TV, Subramanian V, et al. Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. J Vis Exp, 2015(99):e52727

  17. Tsiftsoglou AS, Pappas IS, Vizirianakis IS. Mechanisms involved in the induced differentiation of leukemia cells. Pharmacol Ther, 2003,100(3):257–290

    Article  CAS  Google Scholar 

  18. Agathocleous M, Harris WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol, 2013,23(10):484–492

    Article  CAS  Google Scholar 

  19. Holyoake TL, Helgason GV. Do we need more drugs for chronic myeloid leukemia? Immunol Rev, 2015,263(1):106–123

    Article  CAS  Google Scholar 

  20. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell, 2016,166(3):555–566

    Article  CAS  Google Scholar 

  21. Bogacka I, Xie H, Bray GA, et al. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes, 2005,54(5):1392–1399

    Article  CAS  Google Scholar 

  22. Ghosh S, Patel N, Rahn D, et al. The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Mol Pharmacol, 2007,71(6):1695–1702

    Article  CAS  Google Scholar 

  23. Kukidome D, Nishikawa T, Sonoda K, et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes, 2006,55(1):120–127

    Article  CAS  Google Scholar 

  24. Noh YH, Kim K, Shim MS, et al.. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis, 2013,4:e820

    Article  CAS  Google Scholar 

  25. Corton JM, Gillespie JG, Hawley SA, et al. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem, 1995,229(2):558–565

    Article  CAS  Google Scholar 

  26. Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009,458(7241):1056–1060

    Article  Google Scholar 

  27. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med, 2016,375(21):2023–2036

    Article  CAS  Google Scholar 

  28. Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med, 2001,134(7):573–586

    Article  CAS  Google Scholar 

  29. Du L, Yang F, Fang H, et al. AICAr suppresses cell proliferation by inducing NTP and dNTP pool imbalances in acute lymphoblastic leukemia cells. FASEB J, 2019,33(3):4525–4537

    Article  CAS  Google Scholar 

  30. Shin DY, Sung Kang H, Kim G, et al. Decitabine, a DNA methyltransferases inhibitor, induces cell cycle arrest at G2/M phase through p53-independent pathway in human cancer cells. Biomed Pharmacother, 2013,67(4):305–311

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jian Zhu.

Additional information

Conflict of Interest Statement

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Xy., Liu, W., Liang, Ht. et al. AICAR and Decitabine Enhance the Sensitivity of K562 Cells to Imatinib by Promoting Mitochondrial Activity. CURR MED SCI 40, 871–878 (2020). https://doi.org/10.1007/s11596-020-2266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2266-1

Key words

Navigation