Skip to main content
Log in

Bone Microthrombus Promotes Bone Loss in Iron Accumulation Rats

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

In the present study, we investigated the changes of the coagulation state, bone microthrombus, microvascular bed and bone density levels in iron accumulation rats. Meanwhile,the effect of anticoagulation therapy on bone mineral density was further investigated. We established two groups: a control (Ctrl) group and an iron intervention (FAC) group. Changes in coagulation function, peripheral blood cell counts, bone microthrombus, bone vessels and bone mineral density were compared between the two groups. We designed the non-treatment group and treatment group to study the changes of bone mineral density by preventing microthrombus formation with the anticoagulant fondaparinux. We found that the fibrinogen and D-dimer contents were significantly higher, whereas the thrombin time (TT) and prothrombin time (PT) were significantly shorter in the FAC group. After ink staining, the microvascular bed in the FAC group was significantly reduced compared with that in the Ctrl group. HE and Martius Scarlet Blue (MSB) staining showed microthrombus in the bone marrow of the iron accumulation rats. Following anticoagulation therapy, the bone microcirculation vascular bed areas in the treatment group rats were significantly increased. Furthermore, the bone mineral density was increased in the treatment group compared with that in the non-treatment group. Through experiments, we found that the blood in iron accumulation rat was relatively hypercoagulable; moreover, there was microthrombus in the bone marrow, and the bone vascular bed was reduced. Additionally, anticoagulation was helpful for improving bone microcirculation, reducing microthrombus and decreasing bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horwitz LD, Rosenthal EA. Iron-mediated cardiovascular injury. Vasc Med, 1999,4(2):93–99

    Article  CAS  PubMed  Google Scholar 

  2. Salonen JT, Nyyssonen K, Korpela H, et al. High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men. Circulation, 1992,86(3):803–811

    Article  CAS  PubMed  Google Scholar 

  3. de Valk B, Addicks MA, Gosriwatana I, et al. Non-transferrin-bound iron is present in serum of hereditary haemochromatosis heterozygotes. Eur J Clin Invest, 2000,30(3):248–251

    Article  CAS  PubMed  Google Scholar 

  4. Tuomainen TP, Kontula K, Nyyssonen K, et al. Increased risk of acute myocardial infarction in carriers of the hemochromatosis gene Cys282Tyr mutation: a prospective cohort study in men in Eastern Finland. Circulation, 1999,100(12):1274–1279

    Article  CAS  PubMed  Google Scholar 

  5. Roest M, van der Schouw YT, de Valk B, et al. Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular death in women. Circulation, 1999,100(12):1268–1273

    Article  CAS  PubMed  Google Scholar 

  6. Day SM, Duquaine D, Mundada LV, et al. Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation, 2003,107(20):2601–2606

    Article  CAS  PubMed  Google Scholar 

  7. Sarrai M, Duroseau H, D’Augustine J, et al. Bone mass density in adults with sickle cell disease. Br J Haematol, 2007,136(4):666–672

    Article  CAS  PubMed  Google Scholar 

  8. Guggenbuhl P, Deugnier Y, Boisdet JF, et al. Bone mineral density in men with genetic hemochromatosis and HFE gene mutation. Osteoporosis International, 2005,16(12):1809–1814

    Article  CAS  PubMed  Google Scholar 

  9. Kim BJ, Ahn SH, Bae SJ, et al. Iron overload accelerates bone loss in healthy postmenopausal women and middle-aged men: a 3-year retrospective longitudinal study. J Bone Miner Res, 2012,27(11):2279–2290

    Article  CAS  PubMed  Google Scholar 

  10. Weinberg ED. Iron loading: a risk factor for osteoporosis. Biometals, 2006,19(6):633–635

    Article  CAS  PubMed  Google Scholar 

  11. Yuan Y, Xu F, Cao Y, et al. Iron Accumulation Leads to Bone Loss by Inducing Mesenchymal Stem Cell Apoptosis Through the Activation of Caspase3. Biol Trace Elem Res, 2019,187(2):434–441

    Article  CAS  PubMed  Google Scholar 

  12. Schlitt A, Buerke M, Hauroeder B, et al. Fondaparinux and enoxaparin in comparison to unfractionated heparin in preventing thrombus formation on mechanical heart valves in an ex vivo rabbit model. Thromb Haemost, 2003,90(2):245–251

    CAS  PubMed  Google Scholar 

  13. Demirtas A, Azboy I, Bulut M, et al. Investigation of the effects of Enoxaparin, Fondaparinux, and Rivaroxaban used in thromboembolism prophylaxis on fracture healing in rats. Eur Rev Med Pharmacol Sci, 2013,17(14):1850–1856

    CAS  PubMed  Google Scholar 

  14. Fischer F, Appert-Flory A, Jambou D, et al. Evaluation of the automated coagulation analyzer Sysmex CA-7000. Thromb Res, 2006,117(6):721–729

    Article  CAS  PubMed  Google Scholar 

  15. Huang LF, Shi HL, Gao B, et al. Decichine enhances hemostasis of activated platelets via AMPA receptors. Thromb Res, 2014,133(5):848–854

    Article  CAS  PubMed  Google Scholar 

  16. Wells PS, Brill-Edwards P, Stevens P, et al. A novel and rapid whole-blood assay for D-dimer in patients with clinically suspected deep vein thrombosis. Circulation, 1995,91(8):2184–2187

    Article  CAS  PubMed  Google Scholar 

  17. Freyburger G, Trillaud H, Labrouche S, et al. D-dimer strategy in thrombosis exclusion—a gold standard study in 100 patients suspected of deep venous thrombosis or pulmonary embolism: 8 DD methods compared. Thromb Haemost, 1998,79(1):32–37

    Article  CAS  PubMed  Google Scholar 

  18. Brill-Edwards P, Lee A. D-dimer testing in the diagnosis of acute venous thromboembolism. Thromb Haemost, 1999,82(2):688–694

    CAS  PubMed  Google Scholar 

  19. van der Hulle T, den Exter PL, Erkens PG, et al. Variable D-dimer thresholds for diagnosis of clinically suspected acute pulmonary embolism. J Thromb Haemost, 2013,11(11):1986–1992

    Article  CAS  PubMed  Google Scholar 

  20. Favresse J, Lippi G, Roy PM, et al. D-dimer: Preanalytical, analytical, postanalytical variables, and clinical applications. Crit Rev Clin Lab Sci, 2018,55(8):548–577

    Article  CAS  PubMed  Google Scholar 

  21. Donahue DL, Beck J, Fritz B, et al. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans. J Neurotrauma, 2014,31(4):404–410

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arias-Negrete S, Jiménez-Romero LA, Solís-Martínez MO, et al. Indirect determination of nitric oxide production by reduction of nitrate with a freeze-thawing-resistant nitrate reductase from Escherichia coli MC1061. Anal Biochem, 2004,328(1):14–21

    Article  CAS  PubMed  Google Scholar 

  23. Lu M, Liu Y, Shao M, et al. Associations of Iron Intake, Serum Iron and Serum Ferritin with Bone Mineral Density in Women: The National Health and Nutrition Examination Survey, 2005–2010. Calcif Tissue Int, 2020,106(3):232–238

    Article  CAS  PubMed  Google Scholar 

  24. Orino K, Lehman L, Tsuji Y, et al. Ferritin and the response to oxidative stress. Biochem J, 2001,357 (Pt 1):241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung DW, Park JH, Kim DH, et al. Association between serum ferritin and hemoglobin levels and bone health in Korean adolescents: A nationwide population-based study. Medicine (Baltimore), 2017,96(51):e9403

    Article  CAS  Google Scholar 

  26. Dale JC, Burritt MF, Zinsmeister AR. Diurnal variation of serum iron, iron-binding capacity, transferrin saturation, and ferritin levels. Am J Clin Pathol, 2002,117(5):802–808

    Article  CAS  PubMed  Google Scholar 

  27. Valenti L, Varenna M, Fracanzani AL, et al. Association between iron overload and osteoporosis in patients with hereditary hemochromatosis. Osteoporos Int, 2009,20(4):549–555

    Article  CAS  PubMed  Google Scholar 

  28. Rossi F, Perrotta S, Bellini G, et al. Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels. Haematologica, 2014,99(12):1876–1884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Si L, Winzenberg TM, Chen M, et al. Screening for osteoporosis in Chinese post-menopausal women: a health economic modelling study. Osteoporos Int, 2016,27(7):2259–2269

    Article  CAS  PubMed  Google Scholar 

  30. Milman N, Kirchhoff M. Iron stores in 1359, 30- to 60-year-old Danish women: evaluation by serum ferritin and hemoglobin. Ann Hematol, 1992,64(1):22–27

    Article  CAS  PubMed  Google Scholar 

  31. Kim BJ, Lee SH, Koh JM, et al. The association between higher serum ferritin level and lower bone mineral density is prominent in women S45 years of age (KNHANES 2008–2010). Osteoporosis International, 2013,24(10):2627–2637

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Chen B, Sun J, et al.. Iron-induced oxidative stress stimulates osteoclast differentiation via NF-κB signaling pathway in mouse model. Metabolism, 2018,83:167–176

    Article  CAS  PubMed  Google Scholar 

  33. Jia P, Xu YJ, Zhang ZL, et al. Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. J Orthop Res, 2012,30(11):1843–1852

    Article  CAS  PubMed  Google Scholar 

  34. Xiao W, Beibei F, Guangsi S, et al. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass. J Endocrinol, 2015,226(3):121–134

    Article  CAS  PubMed  Google Scholar 

  35. Gow AJ, Farkouh CR, Munson DA, et al. Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol, 2004,287(2):L262–268

    Article  CAS  PubMed  Google Scholar 

  36. Russo G, Leopold JA, Loscalzo J. Vasoactive substances: nitric oxide and endothelial dysfunction in atherosclerosis. Vascul Pharmacol, 2002,38(5):259–269

    Article  CAS  PubMed  Google Scholar 

  37. Pechánová O, Simko F. The role of nitric oxide in the maintenance of vasoactive balance. Physiol Res, 2007,56(Suppl 2):S7–S16

    Article  PubMed  Google Scholar 

  38. Tufano A, Coppola A, Contaldi P, et al. Oral anticoagulant drugs and the risk of osteoporosis: new anticoagulants better than old? Semin Thromb Hemost, 2015,41(4):382–388

    Article  CAS  PubMed  Google Scholar 

  39. Signorelli SS, Scuto S, Marino E, et al. Anticoagulants and Osteoporosis. Int J Mol Sci, 2019,20(21):5275

    Article  CAS  PubMed Central  Google Scholar 

  40. Muir JM, Andrew M, Hirsh J, et al. Histomorphometric Analysis of the Effects of Standard Heparin on Trabecular Bone in Vivo. Blood, 1996,88(4):1314–1320

    Article  CAS  PubMed  Google Scholar 

  41. Muir JM, Hirsh J, Weitz JI, et al. A histomorphometric comparison of the effects of heparin and low-molecular weight heparin on cancellous bone in rats. Blood, 1997,89(9):3236–3242

    Article  CAS  PubMed  Google Scholar 

  42. Johnston A, Hsieh SC, Carrier M, et al. A systematic review of clinical practice guidelines on the use of low molecular weight heparin and fondaparinux for the treatment and prevention of venous thromboembolism: Implications for research and policy decision-making. PLoS One, 2018,13(11):e0207410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lindner T, Cockbain AJ, El Masry MA, et al. The effect of anticoagulant pharmacotherapy on fracture healing. Expert Opin Pharmacother, 2008,9(7):1169–1187

    Article  CAS  PubMed  Google Scholar 

  44. Papathanasopoulos A, Kouroupis D, Henshaw K, et al. Effects of antithrombotic drugs fondaparinux and tinzaparin on in vitro proliferation and osteogenic and chondrogenic differentiation of bone-derived mesenchymal stem cells. J Orthop Res, 2011,29(9):1327–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alban S. Adverse effects of heparin. Handb Exp Pharmacol, 2012,(207):211–263

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-jia Xu.

Additional information

Conflict of Interest Statement

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, Hf., Dong, Lj., Tang, Xb. et al. Bone Microthrombus Promotes Bone Loss in Iron Accumulation Rats. CURR MED SCI 40, 943–950 (2020). https://doi.org/10.1007/s11596-020-2251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2251-8

Key words

Navigation