Skip to main content
Log in

Oleic Acid (OA), A Potential Dual Contrast Agent for Postmortem MR Angiography (PMMRA): A Pilot Study

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Choosing proper perfusates as contrast agents is an important aspect for postmortem magnetic resonance angiography (PMMRA). However, in this emerging field, the number of suitable kinds of liquid is still very limited. The objective of this research is to compare MR images of oleic acid (OA) with paraffin oil (PO) in vitro and in ex situ animal hearts, in order to evaluate the feasibility to use OA as a novel contrast agent for PMMRA. In vitro, OA, PO and water (control) were introduced into three tubes separately and T1weighted-spin echo (T1w-SE) and T2w-SE images were acquired on a 1.5T MR scanner. In the second experiment, OA and PO were injected into left coronary artery (LCA) and left ventricle (LV) of ex situ bovine hearts and their T1w-SE, T2w-SE, T1w-multipoint Dixon (T1w-mDixon) and 3DT2w-mDixon images were acquired. The overall results indicate that OA may have a potential to be used as a dual (T1 and T2 based) contrast agent for PMMRA when proper sequence parameters are utilized. However, as the pilot study was based on limited number of animal hearts, more researches using OA in cadavers are needed to validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ampanozi G, Halbheer D, Ebert LC, et al. Postmortem imaging findings and cause of death determination compared with autopsy: a systematic review of diagnostic test accuracy and meta-analysis. Int J Legal Med, 2020,134(1):321–337

    PubMed  Google Scholar 

  2. Grabherr S, Heinemann A, Vogel H, et al. Postmortem CT angiography compared with autopsy: A forensic multicenter study. Radiology, 2018,288(1):270–276

    PubMed  PubMed Central  Google Scholar 

  3. Michaud K, Genet P, Sabatasso S, et al. Postmortem imaging as a complementary tool for the investigation of cardiac death. Forensic Sci Res, 2019,4(3):211–222

    PubMed  PubMed Central  Google Scholar 

  4. Rutty GN, Morgan B, Robinson C, et al. Diagnostic accuracy of post-mortem CT with targeted coronary angiography versus autopsy for coroner-requested post-mortem investigations: a prospective, masked, comparison study. Lancet, 2017,390(10090):145–154

    PubMed  PubMed Central  Google Scholar 

  5. Baglivo M, Winklhofer S, Hatch GM, et al. The rise of forensic and post-mortem radiology—Analysis of the literature between the year 2000 and 2011. J Forensic Radiol Imaging, 2013,1(1):3–9

    Google Scholar 

  6. Hall F, Forbes S, Rowbotham S, et al. Using PMCT of Individuals of Known Age to Test the Suchey-Brooks Method of Aging in Victoria, Australia. J Forensic Sci, 2019,64(6):1782–1787

    PubMed  Google Scholar 

  7. Okuda T, Shiotani S, Sakamoto N, et al. Background and current status of postmortem imaging in Japan: short history of “Autopsy imaging (Ai)”. Forensic Sci Int, 2013,225(1–3):3–8

    PubMed  Google Scholar 

  8. Rutty GN, Brogdon G, Dedouit F, et al. Terminology used in publications for post-mortem cross-sectional imaging. Int J Legal Med, 2013,127(2):465–466

    PubMed  Google Scholar 

  9. Ampanozi G, Thali YA, Schweitzer W, et al. Accuracy of non-contrast PMCT for determining cause of death. Forensic Sci Med Pathol, 2017,13(3):284–292

    PubMed  Google Scholar 

  10. Cartocci G, Santurro A, Neri M, et al. Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies. Radiol Med, 2019,124(10):1018–1027

    PubMed  Google Scholar 

  11. Del Fante Z, De Matteis A, Fazio V, et al. The importance of Post Mortem Computed Tomography (PMCT) in the reconstruction of the bullet trajectory. Clin Ter, 2019,170(2):e129–e133

    CAS  PubMed  Google Scholar 

  12. Filograna L, Flach PM, Bolliger SA, et al. The role of post-mortem CT (PMCT) imaging in the diagnosis of pericardial tamponade due to hemopericardium: A case report. Leg Med (Tokyo), 2014,16(3):150–153

    Google Scholar 

  13. Okuda T, Shiotani S, Kobayashi T, et al. Possibility of visualization of gastrothorax based on unenhanced postmortem computed tomography/PMCT. Leg Med (Tokyo), 2015,17(6):521–524

    PubMed  Google Scholar 

  14. Grabherr S, Egger C, Vilarino R, et al. Modern postmortem imaging: an update on recent developments. Forensic Sci Res, 2017,2(2):52–64

    PubMed  PubMed Central  Google Scholar 

  15. Sabatasso S, Vanhaebost J, Doenz F, et al. Visualization of Myocardial Infarction in Postmortem Multiphase Computed Tomography Angiography: A Feasibility Study. Am J Forensic Med Pathol, 2018,39(2):106–113

    PubMed  Google Scholar 

  16. Bruguier C, Mosimann PJ, Vaucher P, et al. Multi-phase postmortem CT angiography: recognizing technique-related artefacts and pitfalls. Int J Legal Med, 2013,127(3):639–652

    CAS  PubMed  Google Scholar 

  17. Grabherr S, Doenz F, Steger B, et al. Multi-phase postmortem CT angiography: development of a standardized protocol. Int J Legal Med, 2011,125(6):791–802

    PubMed  Google Scholar 

  18. Morgan B, Biggs MJ, Barber J, et al. Accuracy of targeted post-mortem computed tomography coronary angiography compared to assessment of serial histological sections. Int J Legal Med, 2013,127(4):809–817

    CAS  PubMed  Google Scholar 

  19. Rutty G, Saunders S, Morgan B, et al. Targeted cardiac post-mortem computed tomography angiography: a pictorial review. Forensic Sci Med Pathol, 2012,8(1):40–47

    PubMed  Google Scholar 

  20. Saunders SL, Morgan B, Raj V, et al. Targeted postmortem computed tomography cardiac angiography: proof of concept. Int J Legal Med, 2011,125(4):609–616

    PubMed  Google Scholar 

  21. Bruguier C, Egger C, Vallee JP, et al. Postmortem magnetic resonance imaging of the heart ex situ: development of technical protocols. Int J Legal Med, 2015,129(3):559–567

    CAS  PubMed  Google Scholar 

  22. Jackowski C, Schwendener N, Grabherr S, et al. Postmortem cardiac 3-T magnetic resonance imaging: visualization of sudden cardiac death?. J Am Coll Cardiol, 2013,62(7):617–629

    PubMed  Google Scholar 

  23. Ruder TD, Thali MJ, Hatch GM. Essentials of forensic post-mortem MR imaging in adults. Br J Radiol, 2014,87(1036):20130567

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tschui J, Jackowski C, Schwendener N, et al. Postmortem CT and MR brain imaging of putrefied corpses. Int J Legal Med, 2016,130(4):1061–1068

    CAS  PubMed  Google Scholar 

  25. Zech WD, Hottinger AL, Schwendener N, et al. Postmortem 1.5T MR quantification of regular anatomical brain structures. Int J Legal Med, 2016,130(4):1071–1080

    PubMed  Google Scholar 

  26. Zech WD, Schwendener N, Persson A, et al. Postmortem MR quantification of the heart for characterization and differentiation of ischaemic myocardial lesions. Eur Radiol, 2015,25(7):2067–2073

    PubMed  Google Scholar 

  27. Zech WD, Schwendener N, Persson A, et al. Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol, 2015,25(8):2381–2389

    PubMed  Google Scholar 

  28. Ruder TD, Hatch GM, Ebert LC, et al. Whole body postmortem magnetic resonance angiography. J Forensic Sci, 2012,57(3):778–782

    PubMed  Google Scholar 

  29. Webb B, Widek T, Neumayer B, et al. Temperature dependence of viscosity, relaxation times (T1, T2) and simulated contrast for potential perfusates in postmortem MR angiography (PMMRA). Int J Legal Med, 2017,131(3):739–749

    PubMed  Google Scholar 

  30. Webb B, Widek T, Scheicher S, et al. Post-mortem MR angiography: quantitative investigation and intravascular retention of perfusates in ex situ porcine hearts. Int J Legal Med, 2018,132(2):579–587

    PubMed  PubMed Central  Google Scholar 

  31. National Center for Biotechnology Information. PubChem Database. Oleic acid. https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-acid. (accessed on Sept. 27, 2019)

  32. Carrillo C, Cavia Mdel M, Alonso-Torre S. Role of oleic acid in immune system; mechanism of action; a review. Nutr Hosp, 2012,27(4):978–990

    CAS  PubMed  Google Scholar 

  33. Carrillo C, Cavia Mdel M, Alonso-Torre S R. Antitumor effect of oleic acid; mechanisms of action: a review. Nutr Hosp, 2012,27(6):1860–1865

    CAS  PubMed  Google Scholar 

  34. Teres S, Barcelo-Coblijn G, Benet M, et al. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc Natl Acad Sci USA, 2008,105(37):13 811–13 816

    CAS  Google Scholar 

  35. Sagdeev D, Gabitov Ig, Isyanov C, et al. Densities and Viscosities of Oleic Acid at Atmospheric Pressure. J Am Oil Chem Soc, 2019,96(6):647–662

    CAS  Google Scholar 

  36. Dedouit F, Baumann P, Bruguier C, et al. Postmortale Magnetresonanztomographie-Angiographie nach Multiphasen-Computertomographie-Angiographie. Rechtsmedizin, 2017,27(5):421–426

    Google Scholar 

  37. ScienceDirect. Learn more about Paraffin. https://www.sciencedirect.com/topics/chemical-engineering/paraffin. (accessed on Sept. 27, 2019)

  38. Gold GE, Eric H, Jeff S, et al. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. Ajr Am J Roentgenol, 2004,183(2):343–351

    PubMed  Google Scholar 

  39. Stanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med, 2005,54(3):507–512

    PubMed  Google Scholar 

  40. Adolphi N, Gerrard C, Hatch G, et al. Determining the temperature-dependence of tissue relaxation times (T1 and T2) for prospective optimization of post-mortem magnetic resonance (PMMR) image contrast. J Forensic Radiol Imaging, 2013,1(2):80

    Google Scholar 

  41. Ruder TD, Hatch GM, Siegenthaler L, et al. The influence of body temperature on image contrast in post mortem MRI. Eur J Radiol, 2012,81(6):1366–1370

    PubMed  Google Scholar 

  42. Zech WD, Schwendener N, Persson A, et al. Temperature dependence of postmortem MR quantification for soft tissue discrimination. Eur Radiol, 2015,25(8):2381

    PubMed  Google Scholar 

  43. Westbrook C, Roth CK, Talbot J. MRI in Practice Fourth Edition. Blackwell Publishing Ltd, 2019

  44. Jeong HK, Lee KH, Min HK, et al. Signal Intensity of Contrast Enhancement according to TE in 3.0T MRI T1 Imaging. App Sci, 2018,8(7):1138

    Google Scholar 

  45. Berman P, Meiri N, Colnago LA, et al. Study of liquidphase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel). Biotechnol Biofuels, 2015,8(1):12

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yuan Xia.

Ethics declarations

The authors declare no conflicts of interest in this study.

Additional information

This project was supported by a grant from China Scholarship Council (No. CSC 201707070113).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Zy., Bruguier, C., Dedouit, F. et al. Oleic Acid (OA), A Potential Dual Contrast Agent for Postmortem MR Angiography (PMMRA): A Pilot Study. CURR MED SCI 40, 786–794 (2020). https://doi.org/10.1007/s11596-020-2244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2244-7

Key words

Navigation