Skip to main content
Log in

Anti-inflammation Effects of Sinomenine on Macrophages through Suppressing Activated TLR4/NF-κB Signaling Pathway

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Sinomenine (SN) has been used in the clinical treatment of systemic lupus erythematosus and rheumatoid arthritis for many years. Studies showed that SN held protective effects such as anti-inflammation, scavenging free radicals and suppressing immune response in many autoimmune diseases. The purpose of the present study is to explore the mechanism of anti-inflammation of SN on lipopolysaccharide (LPS)-induced macrophages activation and investigate whether the TLR4/NF-κB signaling pathway participated in. Macrophages isolated from mouse peritoneal cavity were stimulated by 1 µg/mL LPS for 24 h. And then the cells were treated with various concentrations of SN, TLR4 inhibitor respectively for additional 48 h. Drug toxicity was detected by MTT assay and Transwell experiment was used to assess chemotaxis. Furthermore, TLR4 and MyD88 mRNA levels were detected by real-time PCR. Western blotting was used to examine TLR4, MyD88 and phosphorylated IκB protein expression in macrophages. Immunofluorescence assay was applied to observe p65 NF-κB protein expression in macrophage nucleus. We extracted macrophages with high purity and activity from the abdominal cavity of mice. SN remarkably inhibited the chemotaxis and secretion function of LPS-stimulated macrophages. It also down-regulated both the protein levels of inflammatory cytokines (TNF-α, IL-1β and IL-6) and the RNA and protein levels of the key factors (TLR4, MyD88, P-IκB) in TLR4 pathway. The expression of p65 NF-κB protein in nuclei was down-regulated, which was correlated with a similar decrease in P-IκB protein level. In conclusion, SN can inhibit the LPS induced immune responses in macrophages by blocking the activated TLR4/NF-κB signaling pathway. These results may provide a therapeutic approach to regulate inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hume DA. The many alternative faces of macrophage activation. Front Immunol, 2015,6:370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014,40(2):274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao Z, Xiao J, Wang J, et al. Anti-inflammatory effects of novel sinomenine derivatives. Int Immunopharmacol, 2015,29(2):354

    Article  CAS  PubMed  Google Scholar 

  4. Zhang X, Goncalves R, Mosser DM. The Isolation and Characterization of Murine Macrophages. Curr Protoc Immunol, 2008:Unit-14.1

  5. Yamasaki H. Pharmacology of sinomenine, an anti-rheumatic alkaloid from Sinomenium acutum. Acta Med Okayama, 1976,30(1):1

    CAS  PubMed  Google Scholar 

  6. Lodge D, Headley PM, Duggan AW, et al. The effects of morphine, etorphine and sinomenine on the chemical sensitivity and synaptic responses of Renshaw cells and other spinal neurones in the rat. Eur J Pharmacol, 1974,26(2):277–284

    Article  CAS  PubMed  Google Scholar 

  7. Jiang Y, Gao M, Wang W, et al. Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy. Int J Mol Sci, 2015,16(2):2559–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qian L, Xu Z, Zhang W, et al. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation, 2007,4(1):1–14

    Article  CAS  Google Scholar 

  9. Hu J, Lou D, Carow B, et al. LPS regulates SOCS2 transcription in a type I interferon dependentautocrine-paracrine loop. PLoS One, 2012,7(1):e30166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Fang Y, Huang W, et al. Effect of sinomenine on cytokine expression of macrophages and synoviocytes in adjuvant arthritis rats. J Ethnopharmacol, 2005,98(1):37–43

    Article  CAS  PubMed  Google Scholar 

  11. Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. CHEST, 1997,112(1):235–243

    Article  CAS  PubMed  Google Scholar 

  12. Cheng H, Xia B, Guo Q, et al. Sinomenine attenuates 2, 4, 6-trinitrobenzene sulfonic acid-induced colitis in mice. Int Immunopharmacol, 2007,7(5):604–611

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis, 2016,7(5):e2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lorenz E, Patel DD, Hartung T, et al. Toll-like receptor 4 (TLR4)-deficient murine macrophage cell line as an in vitro assay system to show TLR4-independent signaling of Bacteroides fragilis lipopolysaccharide. Infect Immun, 2002,70(9):4892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pei J, Ding X, Fan Y, et al. Toll-like receptors are critical for clearance of Brucellaand play different roles in development of adaptive immunity following aerosol challenge in mice. Front Cell Infect Microbiol, 2012,2(10):115

    PubMed  PubMed Central  Google Scholar 

  16. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science, 1999,285(5428):732

    Article  CAS  PubMed  Google Scholar 

  17. Hirschfeld M, Weis JJ, Toshchakov V, et al. Signaling by Toll-Like Receptor 2 and 4 Agonists Results in Differential Gene Expression in Murine Macrophages. Infect Immun, 2001,69(3):1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen ST, Li JY, Zhang Y, et al. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. J Immunol, 2012,188(2):668–677

    Article  CAS  PubMed  Google Scholar 

  19. Aliprantis AO, Yang RB, Mark MR, et al. Cell Activation and Apoptosis by Bacterial Lipoproteins Through Toll-like Receptor-2. Science, 1999,285(5428):736–739

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis, 2016,7(5):e2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giacomo VD, Felici M, Meduri V, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis, 2011,17(7):1464–1473

    Article  Google Scholar 

  22. Saito K, Katakura K, Suzuki R, et al. Modulating Toll-like receptor 4 signaling pathway protects mice from experimental colitis. Fukushima J Med Sci, 2013,59(2):81–88

    Article  CAS  PubMed  Google Scholar 

  23. Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol, 2007,7(3):179

    Article  CAS  PubMed  Google Scholar 

  24. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000,406(6797):782–787

    Article  CAS  PubMed  Google Scholar 

  25. Kaisho T, Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol, 2006,117(5):979

    Article  CAS  PubMed  Google Scholar 

  26. Palombella VJ, Conner EM, Fuseler JW, et al. Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA, 1998,95(26):15671

    Article  CAS  PubMed  Google Scholar 

  27. Xi L, Han X, Qian L, et al. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun, 2017,61:326–339

    Article  CAS  Google Scholar 

  28. Vuong TT, Rønning SB, Suso HP, et al. The extracellular matrix of eggshell displays anti-inflammatory activities through NF-κB in LPS-triggered human immune cells. J Inflamm Res, 2017,10:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li HR, Liu J, Zhang SL, et al. Corilagin ameliorates the extreme inflammatory status in sepsis through TLR4 signaling pathways. BMC Complement Altern Med, 2017,17(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rahman FZ, Smith AM, Hayee BH, et al. Delayed resolution of acute inflammation in ulcerative colitis is associated with elevated cytokine release downstream of TLR4. PLoS One, 2010,5(3):e9891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-yun Tong.

Additional information

Conflict of Interest Statement

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, My., Tong, Qy. Anti-inflammation Effects of Sinomenine on Macrophages through Suppressing Activated TLR4/NF-κB Signaling Pathway. CURR MED SCI 40, 130–137 (2020). https://doi.org/10.1007/s11596-020-2156-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2156-6

Key words

Navigation