Skip to main content
Log in

Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Type 1 diabetes mellitus (T1DM) is associated with an increased risk of diabetic cardiomyopathy (DCM). Nuclear factor kappa B (NF-κB) and Wnt/β-catenin/GSK3β have been demonstrated to play pathogenic roles in diabetes. In this study, we evaluated the roles of these two pathways in T1DM-induced cardiomyopathy in rats. Streptozotocin (STZ)-induced type 1 diabetic rats were treated with pyrrolidine dithiocarbamate (PDTC) or meisoindigo (Me) to inhibit NF-κB and Wnt/β-catenm/GSK3β respectively for 4 or 8 weeks. As compared with untreated diabetic rats, treatment with either PDTC or Me partly attenuated the myocardial hypertrophy and interstitial fibrosis, improved cardiac function, and exhibited reduction in inflammatory reaction. In addition, we found that inhibiting NF-κB and Wnt/β-catenin/GSK3β pathways could regulate glucose and lipid metabolism. The effects were associated with the decrease of NF-κB activity and the downregulation of some proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-2. Our data suggested that the activities of NF-κB and Wnt/β-catenin/GSK3β pathways were both increased and inhibiting NF-κB and Wnt/β-catenin/GSK3β signaling pathways might improve myocardial injury in T1DM rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Z, Zhang D, Dou M, et al. Dendrobium officinale Kimura et Migo attenuates diabetic cardiomyopathy through inhibiting oxidative stress, inflammation and fibrosis in streptozotocin-induced mice. Biomed Pharmacother, 2016,84:1350–1358

    Article  CAS  PubMed  Google Scholar 

  2. Liu Q, Wang S, Cai L. Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage. J Diabetes Invest, 2015,5(6):623–634

    Article  Google Scholar 

  3. van Diepen JA, Thiem K, Stienstra R, et al. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive. Cell Mol Life Sci, 2016,73(24):4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res, 2016,111:172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rajesh M, Mukhopadhyay P, Bátkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol, 2010,56(25):2115–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo R, Nair S. Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention. Biochim Biophys Acta, 2017,1863:2070–2077

    Article  CAS  PubMed Central  Google Scholar 

  7. Zheng X, Zhu S, Chang S, et al. Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: Role of NF-kappa B signaling. Eur J Pharmacol, 2013,720(1–3):147–157

    Article  CAS  PubMed  Google Scholar 

  8. Mong M, Yin M. Nuclear Factor κB-Dependent Anti-inflammatory Effects of s-Allyl Cysteine and s-Propyl Cysteine in Kidney of Diabetic Mice. J Agric Food Chem, 2012,60(12):3158–3165

    Article  CAS  PubMed  Google Scholar 

  9. El-Sahar AE, Safar MM, Zaki HF, et al. Neuroprotective effects of pioglitazone against transient cerebral ischemic reperfusion injury in diabetic rats: Modulation of antioxidant, anti-inflammatory, and anti-apoptotic biomarkers. Pharmacol Rep, 2015,67(5):901–906

    Article  CAS  PubMed  Google Scholar 

  10. Elçioğlu HK, Kabasakal L, Özkan N, et al. A study comparing the effects of rosiglitazone and/or insulin treatments on streptozotocin induced diabetic (type I diabetes) rat aorta and cavernous tissues. Eur J Pharmacol, 2011,660(2–3):476–484

    Article  PubMed  CAS  Google Scholar 

  11. Goudy KS, Johnson MC, Garland A, et al. Inducible adeno-associated virus-mediated IL-2 gene therapy prevents autoimmune diabetes. J Immunol, 2011,186(6):3779–3786

    Article  CAS  PubMed  Google Scholar 

  12. Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol, 2013,591(6):1409–1432

    Article  PubMed  Google Scholar 

  13. Chong ZZ, Maiese K. Targeting WNT. Protein kinase B, and mitochondrial membrane integrity to foster cellular survival in the nervous system. Histol Histopathol, 2004,19(2):495–504

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hie M, Iitsuka N, Otsuka T, et al. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med, 2011,28(3):455–462

    CAS  PubMed  Google Scholar 

  15. Eren G, Cukurova Z, Hergunsel O, et al. Protective effect of the nuclear factor kappa B inhibitor pyrrolidine dithiocarbamate in lung injury in rats with streptozotocin-induced diabetes. Respiration, 2010,79(5):402–410

    Article  CAS  PubMed  Google Scholar 

  16. Huang M, Ho PC. Identification of metabolites of meisoindigo in rat, pig and human liver microsomes by UFLC-MS/MS. Biochem Pharmacol, 2009,77(8):1418–1428

    Article  CAS  PubMed  Google Scholar 

  17. Zhu YF, Ye BG, Shen JZ, et al. Inhibitory effect of VPA on multiple myeloma U266 cell proliferation and regulation of histone acetylation. Zhongguo Shi Yan Xue Ye Xue Za Zhi (Chinese), 2010,18(3):638–641

    CAS  Google Scholar 

  18. Sheng R, Gu ZL, Xie ML. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol, 2013,162(3):199–209

    Article  PubMed  Google Scholar 

  19. Wei H, Qu H, Wang H, et al. 1,25-Dihydroxyvitamin-D3 prevents the development of diabetic cardiomyopathy in type 1 diabetic rats by enhancing autophagy via inhibiting the β-catenin/TCF4/GSK-3β/mTOR pathway. J Steroid Biochem Mol Biol, 2017,168:71–90

    Article  CAS  PubMed  Google Scholar 

  20. Tsai SJ, Huang CS, Mong MC, et al. Anti-inflammatory and antifibrotic effects of naringenin in diabetic mice. J Agric Food Chem, 2012,60(1):514–521

    Article  CAS  PubMed  Google Scholar 

  21. Martinez A, Castro A, Dorronsoro I, et al. Glycogen synthase kinase 3 (GSK-3) inhibitors as new promising drugs for diabetes, neurodegeneration, cancer, and inflammation. Med Res Rev, 2002,22(4):373–384

    Article  CAS  PubMed  Google Scholar 

  22. Monika, Sharma A, Suthar SK, et al. Synthesis of lantadene analogs with marked in vitro inhibition of lung adenocarcinoma and TNF-α induced nuclear factor-kappa B (NF-κB) activation. Bioorg Med Chem Lett, 2014,24(16):3814–3818

    Article  CAS  PubMed  Google Scholar 

  23. Kameyama N, Arisawa S, Ueyama J, et al. Increase in P-glycoprotein accompanied by activation of protein kinase Cα and NF-κB p65 in the livers of rats with streptozotocin-induced diabetes. Biochim Biophys Acta, 2008,1782(5):355–360

    Article  CAS  PubMed  Google Scholar 

  24. Ohsaki Y, Shirakawa H, Miura A, et al. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J Nutr Biochem, 2010,21(11):1120–1126

    Article  CAS  PubMed  Google Scholar 

  25. Zelarayan L, Gehrke C, Bergmann MW. Role of beta-catenin in adult cardiac remodeling. Cell Cycle, 2007,6(17):2120–2126

    Article  CAS  PubMed  Google Scholar 

  26. Garciamartín A, Reyesgarcia R, Garcíafontana B, et al. Relationship of Dickkopf1 (DKK1) with cardiovascular disease and bone metabolism in Caucasian type 2 diabetes mellitus. PLoS One, 2014,9(11):e111703

    Article  CAS  Google Scholar 

  27. Yung-Chien H, Chang PJ, Cheng H, et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep, 2016,6:30575

    Article  CAS  Google Scholar 

  28. Semënov MV, Zhang X, He X. DKK1 Antagonizes Wnt Signaling without Promotion of LRP6 Internalization and Degradation. J Biol Chem, 2008,283(31):21 427–21 432

    Article  CAS  Google Scholar 

  29. Hu Y, Gu X, Li R, et al. Glycogen synthase kinase-3β inhibition induces nuclear factor-κB-mediated apoptosis in pediatric acute lymphocyte leukemia cells. J Exp Clin Cancer Res, 2010,29(1):1–8

    Article  CAS  Google Scholar 

  30. Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature, 2000,406(6791):86–90

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ling Mu.

Additional information

Conflict of Interest Statement

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

This project was supported by the Research Award Fund for Outstanding Young Scientists Plan in Shandong Province of China (No. BS2013SW008), and the Innovation Project of Shandong Academy of Medical Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jj., Shentu, Lm., Ma, N. et al. Inhibition of NF-κB and Wnt/β-catenin/GSK3β Signaling Pathways Ameliorates Cardiomyocyte Hypertrophy and Fibrosis in Streptozotocin (STZ)-induced Type 1 Diabetic Rats. CURR MED SCI 40, 35–47 (2020). https://doi.org/10.1007/s11596-020-2144-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2144-x

Key words

Navigation