Skip to main content
Log in

Mapping Changes of Whole Brain Blood Flow in Rats with Myocardial Ischemia/Reperfusion Injury Assessed by Positron Emission Tomography

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

18F-labeled fluorodeoxyglucose positron emission tomography (18F-FDG PET) is the most sensitive tool for studying brain metabolism in vivo. We investigated the image patterns of 18F-FDG PET during reperfusion injury and correlated changes of whole brain blood flow utilizing a rat myocardial ischemia/reperfusion injury (MIRI) model. The results assessed by echocardiography indicated resultant cardiac dysfunction after ischemia-reperfusion in the rat heart. It was found that the average standardized uptake value (SUVaverage) of the whole brain was significantly decreased in model rats, and the glucose uptake of different brain regions including accumbens core/shell (Acb), left caudate putamen (LCPu), hippocampus (HIP), left hypothalamus (LHYP), olfactory (OLF), superior colliculus (SC), right midbrain (RMID), ventral tegmental area (VTA), inferior colliculus (IC) and left thalamus whole (LTHA) was significantly decreased in MIRI rats whereas no significant difference was found in the SUVaverage of amygdala (AMY), right CPu, RHYP, right HYP, left MID, right THA, pons and medulla oblongata (MO). These 18F-FDG PET data provide a reliable identification method for brain metabolic changes in rats with MIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q, He ZG, Li SY, et al. Application of animal and human PET in cardiac research. Am J Cardiovasc Dis, 2018,8(3):24–30

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hautvast RW, Blanksma PK, DeJongste MJ, et al. Effect of spinal cord stimulation on myocardial blood flow assessed by positron emission tomography in patients with refractory angina pectoris. Am J Cardiol, 1996,77(7):462–467

    Article  CAS  PubMed  Google Scholar 

  3. Blanksma PK, Pruim J. Positron emission tomography: measurement of myocardial perfusion using (13) N-labeled ammonia and (15)O-labeled water. Methods, 2002,27(3):226–227

    Article  CAS  PubMed  Google Scholar 

  4. Mazzeo AT, Micalizzi A, Mascia L, et al. Brain-heart crosstalk: the many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br J Anaesth, 2014,112(5):803–815

    Article  CAS  PubMed  Google Scholar 

  5. Ai J, Epstein PN, Gozal D, et al. Morphology and topography of nucleus ambiguus projections to cardiac ganglia in rats and mice. Neuroscience, 2007,149(4):845–860

    Article  CAS  PubMed  Google Scholar 

  6. Chen M, He ZG, Liu BW, et al. Parafascicular nucleus-heart neural crosstalk: Implications for seizure-induced myocardial stunning. Epilepsy Behav, 2016,63(1):135–137.

    Article  PubMed  Google Scholar 

  7. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis, 2015,57(6):588–606

    Article  PubMed  Google Scholar 

  8. Bergstrom M, Awad R, Estrada S, et al. Autoradiography with positron emitting isotopes in positron emission tomography tracer discovery. Mol Imaging Biol, 2003,5(6):390–396

    Article  PubMed  Google Scholar 

  9. Hoff SJ, Stewart JR, Frist WH, et al. Noninvasive detection of heart transplant rejection with positron emission scintigraphy. Ann Thorac Surg, 1992,53(4):572–577

    Article  CAS  PubMed  Google Scholar 

  10. Srivatsava MK, Indirani M, Sathyamurthy I, et al. Role of PET-CT in the assessment of myocardial viability in patients with left ventricular dysfunction. Indian Heart J, 2016,68(5):693–699

    Article  PubMed  PubMed Central  Google Scholar 

  11. Welch A, Mingarelli M, Riedel G, et al. Mapping changes in mouse brain metabolism with PET/CT. J Nucl Med, 2013,54(11):1946–1953

    Article  CAS  PubMed  Google Scholar 

  12. Daly KP, Dearling JL, Seto T, et al. Use of [18F] FDG Positron Emission Tomography to Monitor the Development of Cardiac Allograft Rejection. Transplantation, 2015,99(9):e132–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Veen DR, Shao J, Chapman S, et al. A 24-hour temporal profile of in vivo brain and heart pet imaging reveals a nocturnal peak in brain 18F-fluorodeoxyglucose uptake. PLoS One, 2012,7(2):e31792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kornblum HI, Araujo DM, Annala AJ, et al. In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol, 2000,18(6):655–660

    Article  CAS  PubMed  Google Scholar 

  15. Pirich C, Schwaiger M. The clinical role of positron emission tomography in management of the cardiac patient. Rev Port Cardiol, 2000,19 Suppl 1:I89–100

    PubMed  Google Scholar 

  16. Elsinga PH, Doze P, van Waarde A, et al. Imaging of beta-adrenoceptors in the human thorax using (S)-[(11) C]CGP12388 and positron emission tomography. Eur J Pharmacol, 2001,433(2-3):173–176

    Article  CAS  PubMed  Google Scholar 

  17. Meeder JG, Peels HO, Blanksma PK, et al. Comparison between positron emission tomography myocardial perfusion imaging and intracoronary Doppler flow velocity measurements at rest and during cold pressor testing in angiographically normal coronary arteries in patients with one-vessel coronary artery disease. Am J Cardiol, 1996,78(5):526–531

    Article  CAS  PubMed  Google Scholar 

  18. Meeder JG, Blanksma PK, van der Wall EE, et al. Coronary vasomotion in patients with syndrome X: evaluation with positron emission tomography and parametric myocardial perfusion imaging. Eur J Nucl Med, 1997,24(5):530–537

    CAS  PubMed  Google Scholar 

  19. Meeder JG, Blanksma PK, van der Wall EE, et al. Long-term cigarette smoking is associated with increased myocardial perfusion heterogeneity assessed by positron emission tomography. Eur J Nucl Med, 1996,23(11):1442–1447

    Article  CAS  PubMed  Google Scholar 

  20. Tian XB, Li RC, Bu HL, et al. The mechanism of electroacupuncture for predicting the efficacy of deep brain stimulation in pharmacoresistant epilepsy may be involved in the melanocortinergic signal. Epilepsy Behav, 2013,29(3):594–596

    Article  PubMed  Google Scholar 

  21. Tian XB, Feng J, Bu HL, et al. The change in cerebral glucose metabolism generated by electroacupuncture may predict the outcome of stimulation of the anterior nucleus thalamus in refractory epilepsy. Epilepsy Behav, 2013,29(2): 427–429

    Article  PubMed  Google Scholar 

  22. Qiu Q, Li RC, Ding DF, et al. Possible mechanism of regulating glucose metabolism with subthalamic nucleus stimulation in Parkinson’s disease: a virally mediated trans-synaptic tracing study in transgenic mice. Parkinsonism Relat Disord, 2014,20(4):468–470

    Article  PubMed  Google Scholar 

  23. Lee WW. Recent Advances in Nuclear Cardiology. Nucl Med Mol Imaging, 2016,50(3):196–206

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagaoka T, Katayama Y, Kano T, et al. Changes in glucose metabolism in cerebral cortex and cerebellum correlate with tremor and rigidity control by subthalamic nucleus stimulation in Parkinson’s disease: a positron emission tomography study. Neuromodulation, 2007,10(3):206–215

    Article  PubMed  Google Scholar 

  25. Qi D, Hu X, Wu X, et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J Clin Invest, 2009,119(12):3807–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Li ZX, Li YJ, et al. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time points following cardiac ischemia/ reperfusion. Int J Mol Med, 2019,43(6):2361–2375

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Q, Li ZX, Li YJ, et al. Alterations in amino acid levels and metabolite ratio of spinal cord in rat with myocardial ischemia-reperfusion injury by proton magnetic resonance spectroscopy. Am J Transl Res, 2019,11(5):3101–3108

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang Q, He ZG, Li ZX, et al. Bioinformatics analysis of gene expression profile data to screen key genes involved in cardiac ischemia-reperfusion injury. Int J Clin Exp Med, 2018,11(5):4955–4966

    Google Scholar 

  29. Xu AJ, Song ZP, Peng YW, et al. Change of mitochondrial function in the early stage after cardiac ischemia-reperfusion injury in mice. Int J Clin Exp Med, 2016,9(2):2549–2554

    CAS  Google Scholar 

  30. Hedhli N, Huang Q, Kalinowski A, et al. Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation, 2011,123(20):2254–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi D, Atsina K, Qu L, et al. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J Clin Invest, 2014,124(8):3540–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Qi D, Cheng H, et al. Urocortin 2 autocrine/ paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proc Natl Acad Sci USA, 2013,110(40):16133–16138

    Article  CAS  PubMed  Google Scholar 

  33. Huang CH, Lai CC, Yang AH, et al. Myocardial preconditioning reduces kidney injury and apoptosis induced by myocardial ischaemia and reperfusion. Eur J Cardio-thorac Surg, 2015,48(3):382–391

    Article  Google Scholar 

  34. Borst O, Ochmann C, Schonberger T, et al. Methods employed for induction and analysis of experimental myocardial infarction in mice. Cell Physiol Biochem, 2011,28(1):1–12

    Article  CAS  PubMed  Google Scholar 

  35. Pisarenko OI, Shulzhenko VS, Studneva IM, et al. Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/ reperfusion injury. Peptides, 2015,73:67-76

    Article  CAS  PubMed  Google Scholar 

  36. Hautvast RW, Ter Horst GJ, DeJong BM, et al. Relative changes in regional cerebral blood flow during spinal cord stimulation in patients with refractory angina pectoris. Eur J Neurosci, 1997,9(6):1178–1183

    Article  CAS  PubMed  Google Scholar 

  37. Wang JP, Guo Z. Propofol suppresses activation of the nociception specific neuron in the parafascicular nucleus of the thalamus evoked by coronary artery occlusion in rats. Eur J Anaesthesiol, 2009,26(1):60–65

    Article  CAS  PubMed  Google Scholar 

  38. Guo Z, Yuan DJ. Midazolam inhibits cardiac nociception evoked by coronary artery occlusion in rats. Eur J Anaesthesiol, 2008,25(6):479–484

    Article  CAS  PubMed  Google Scholar 

  39. Zhu Q, Wu DC, Zhou XP, et al. Inhibitory effect of crotoxin on the pain-evoked discharge of neurons in thalamic parafascicular nucleus in rats. Toxicon, 2008,51(1):102–111

    Article  CAS  PubMed  Google Scholar 

  40. Cronin CC. Central nervous system pathways mediating angina pectoris. Lancet, 1994,344(8927):965

    Article  CAS  PubMed  Google Scholar 

  41. Channer KS. Central nervous system pathways mediating angina pectoris. Lancet, 1994,344(8927):964–965

    Article  CAS  PubMed  Google Scholar 

  42. Rosen SD, Paulesu E, Frith CD, et al. Central nervous pathways mediating angina pectoris. Lancet, 1994,344(8916):147–150

    Article  CAS  PubMed  Google Scholar 

  43. Cheng YF, Chang YT, Chen WH, et al. Cardioprotection induced in a mouse model of neuropathic pain via anterior nucleus of paraventricular thalamus. Nat Commun, 2017,8(1):826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xu LJ, Liu TT, He ZG, et al. Hypothesis: CeM-RVLM circuits may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav, 2015,45:124–127

    Article  PubMed  Google Scholar 

  45. Lindberg D, Chen P, Li C. Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol, 2013,521(14):3167–3190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-chu Pan or Yong-tang Song.

Additional information

This project was supported by grants from National Natural Science Foundation of China (No. 81670240 and No. 81873467), National Natural Science Foundation of Hubei Province (No. 2016CFB625), Medical Innovation Project in Fujian Province (No. 2017-CX-48), and Key Research and Development Project of Hainan Province of China (No. ZDYF2018115).

Conflict of Interest Statement

The authors have no conflicts of interest related to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Xc., Li, Zx., Wu, Dz. et al. Mapping Changes of Whole Brain Blood Flow in Rats with Myocardial Ischemia/Reperfusion Injury Assessed by Positron Emission Tomography. CURR MED SCI 39, 653–657 (2019). https://doi.org/10.1007/s11596-019-2087-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2087-2

Key words

Navigation