Skip to main content

Preventive and Therapeutic Potential of Vitamin C in Mental Disorders

Abstract

In this review, we summarize the involvement of vitamin C in mental disorders by presenting available evidence on its pharmacological effects in animal models as well as in clinical studies. Vitamin C, especially its reduced form, has gained interest for its multiple functions in various tissues and organs, including central nervous system (CNS). Vitamin C protects the neuron against oxidative stress, alleviates inflammation, regulates the neurotransmission, affects neuronal development and controls epigenetic function. All of these processes are closely associated with psychopathology. In the past few decades, scientists have revealed that the deficiency of vitamin C may lead to motor deficit, cognitive impairment and aberrant behaviors, whereas supplement of vitamin C has a potential preventive and therapeutic effect on mental illness, such as major depressive disorder (MDD), schizophrenia, anxiety and Alzheimer's disease (AD). Although several studies support a possible role of vitamin C against mental disorders, more researches are essential to accelerate the knowledge and investigate the mechanism in this field.

This is a preview of subscription content, access via your institution.

References

  1. Rebec GV, Pierce RC. A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol, 1994, 43(6): 537–565

    PubMed  Article  CAS  Google Scholar 

  2. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med, 2011, 51(5): 1000–1013

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Rumsey SC, Daruwala R, Al-Hasani H, et al. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem, 2000, 275(36): 28 246–28 253

    CAS  Google Scholar 

  4. Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem, 1997, 272(30): 18 982–18 989

    Article  CAS  Google Scholar 

  5. Savini I, Rossi A, Pierro C, etal. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids, 2008, 34(3): 347–355

    PubMed  Article  CAS  Google Scholar 

  6. Takanaga H, Mackenzie B, Hediger MA. Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch, 2004, 447(5): 677–682

    PubMed  Article  CAS  Google Scholar 

  7. Harrison FE, May JM. Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med, 2009, 46(6): 719–730

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Schenk JO, Miller E, Gaddis R, et al. Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brain Res, 1982, 253(1-2): 353–356

    PubMed  Article  CAS  Google Scholar 

  9. Zhang M, Liu K, Xiang L, et al. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain. Anal Chem, 2007, 79(17): 6559–6565

    PubMed  Article  CAS  Google Scholar 

  10. Mirazizov KD. Vitamin C content in the cerebrospinal fluid, blood and urine of patients with otogenic intracranial complications. Med Zh Uzb, 1962, 5:40–44

    PubMed  CAS  Google Scholar 

  11. Kratzing CC, Kelly JD, Kratzing JE. Ascorbic acid in fetal rat brain. J Neurochem, 1985, 44(5): 1623–1624

    PubMed  Article  CAS  Google Scholar 

  12. He XB, Kim M, Kim SY, et al. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1-and JMJD3-dependent epigenetic control manner. Stem Cells, 2015, 33(4): 1320–1332

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Qiu S, Li L, Weeber EJ, et al. Ascorbate transport by primary cultured neurons and its role in neuronal function and protection against excitotoxicity. J Neurosci Res, 2007, 85(5): 1046–1056

    PubMed  Article  CAS  Google Scholar 

  14. Eldridge CF, Bunge MB, Bunge RP, et al. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol, 1987, 105(2): 1023–1034

    PubMed  Article  CAS  Google Scholar 

  15. Majewska MD, Bell JA. Ascorbic acid protects neurons from injury induced by glutamate and NMD A. Neuroreport, 1990, 1(3-4): 194–196

    PubMed  Article  CAS  Google Scholar 

  16. Levine M, Morita K, Heldman E, et al. Ascorbic acid regulation of norepinephrine biosynthesis in isolated chromaffin granules from bovine adrenal medulla. J Biol Chem, 1985, 260(29): 15 598–15 603

    CAS  Google Scholar 

  17. Travica N, Ried K, Sali A, et al. Vitamin C Status and Cognitive Function: A Systematic Review. Nutrients, 2017,9(9)

    Google Scholar 

  18. Kuo CH, Hata F, Yoshida H, et al. Effect of ascorbic acid on release of acetylcholine from synaptic vesicles prepared from different species of animals and release of noradrenaline from synaptic vesicles of rat brain. Life Sci, 1979, 24(10): 911–915

    PubMed  Article  CAS  Google Scholar 

  19. Jaber M, Robinson SW, Missale C, et al. Dopamine receptors and brain function. Neuropharmacology, 1996, 35(11): 1503–1519

    PubMed  Article  CAS  Google Scholar 

  20. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev, 2011, 63(1): 182–217

    PubMed  Article  CAS  Google Scholar 

  21. Diliberto EJ Jr, Allen PL. Semidehydroascorbate as a product of the enzymic conversion of dopamine to norepinephrine. Coupling of semidehydroascorbate reductase to dopamine-beta-hydroxylase. Mol Pharmacol, 1980, 17(3): 421–426

    PubMed  CAS  Google Scholar 

  22. Levine M, Asher A, Pollard H, et al. Ascorbic acid and catecholamine secretion from cultured chromaffin cells. J Biol Chem, 1983, 258(21): 13 111–13 115

    CAS  Google Scholar 

  23. Desole MS, Miele M, Enrico P, et al. Investigations into the relationship between the dopaminergic system and ascorbic acid in rat striatum. Neurosci Lett, 1991,127(1): 34–38

    PubMed  Article  CAS  Google Scholar 

  24. Berman SB, Zigmond MJ, Hastings TG. Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem, 1996, 67(2): 593–600

    PubMed  Article  CAS  Google Scholar 

  25. Hastings TG, Lewis DA, Zigmond MJ. Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA, 1996, 93(5): 1956–1961

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. Sandstrom MI, Rebec GV. Extracellular ascorbate modulates glutamate dynamics: role of behavioral activation. BMC Neurosci, 2007,8:32

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Mendelsohn AB, Belle SH, Stoehr GP, et al. Use of antioxidant supplements and its association with cognitive function in a rural elderly cohort: the MoVIES Project. Monongahela Valley Independent Elders Survey. Am J Epidemiol, 1998,148(1): 38–44

    PubMed  Article  CAS  Google Scholar 

  28. Berti V, Murray J, Davies M, et al. Nutrient patterns and brain biomarkers of Alzheimer's disease in cognitively normal individuals. J Nutr Health Aging, 2015, 19(4): 413–423

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sei USA, 1989, 86(16): 6377–6381

    Article  CAS  Google Scholar 

  30. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys, 1993, 300(2): 535–543

    PubMed  Article  CAS  Google Scholar 

  31. Lynch SM, Morrow JD, Roberts LJ, et al. Formation of non-cyclooxygenase-derived prostanoids (F2-isoprostanes) in plasma and low density lipoprotein exposed to oxidative stress in vitro. J Clin Invest, 1994, 93(3): 998–1004

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Franzke C, Heder G, Wenzel H. Effect of pro-and antioxidants on secondary products of fat autoxidation. Nahrung, 1973, 17(4): 429–441

    PubMed  Article  CAS  Google Scholar 

  33. Csallany AS, Draper HH, Shah SN. Conversion of d-alpha-tocopherol-C14 to tocopheryl-p-quinone in vivo. Arch Biochem Biophys, 1962, 98:142–145

    PubMed  Article  CAS  Google Scholar 

  34. Sil S, Ghosh T, Gupta P, et al. Dual Role of Vitamin C on the Neuroinflammation Mediated Neurodegeneration and Memory Impairments in Colchicine Induced Rat Model of Alzheimer Disease. J Mol Neurosci, 2016,60(4): 421–435

    PubMed  Article  CAS  Google Scholar 

  35. Ahmad A, Shah SA, Badshah H, et al. Neuroprotection by Vitamin C Against Ethanol-Induced Neuroinflammation Associated Neurodegeneration in the Developing Rat Brain. CNS Neurol Disord Drug Targets, 2016, 15(3): 360–370

    PubMed  Article  CAS  Google Scholar 

  36. Huang YN, Lai CC, Chiu CT, et al. L-ascorbate attenuates the endotoxin-induced production of inflammatory mediators by inhibiting MAPK activation and NF-kappaB translocation in cortical neurons/glia Cocultures. PLoS One, 2014,9(7): e97276

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Monacelli F, Acquarone E, Giannotti C, et al. Vitamin C, Aging and Alzheimer's Disease. Nutrients, 2017,9(7)

    Google Scholar 

  38. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009, 324(5929): 930–935

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  39. Yin R, Mao SQ, Zhao B, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc, 2013, 135(28): 10 396–10 403

    Article  CAS  Google Scholar 

  40. Chen J, Liu H, Liu J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet, 2013,45(1): 34–42

    PubMed  Article  CAS  Google Scholar 

  41. Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdmla/lb enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 2011, 9(6): 575–587

    PubMed  Article  CAS  Google Scholar 

  42. Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sei, 2016, 73(8): 1645–1658

    Article  CAS  Google Scholar 

  43. Kazakovtsev BA, Krasnov VN, Levina NB, et al. WHO European Ministerial Conference on Mental Health, “facing the challenges, building solutions” (Helsinki, Finland, 12–15 January 2005). Zh Nevrol Psikhiatr Im S S Korsakova, 2005, 105(9): 78–80

    PubMed  CAS  Google Scholar 

  44. Majewska MD. Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol, 1992, 38(4): 379–395

    PubMed  Article  CAS  Google Scholar 

  45. Brambilla P, Perez J, Barale F, et al. GABAergic dysfunction in mood disorders. Mol Psychiatry, 2003, 8(8): 721–737

    PubMed  Article  CAS  Google Scholar 

  46. Mitchell ND, Baker GB. An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr Scand, 2010, 122(3): 192–210

    PubMed  Article  CAS  Google Scholar 

  47. Choi YK, Tarazi FI. Alterations in dopamine and glutamate neurotransmission in tetrahydrobiopterin deficient spr-/-mice: relevance to schizophrenia. BMB Rep, 2010, 43(9): 593–598

    PubMed  Article  CAS  Google Scholar 

  48. Li MX, Zheng HL, Luo Y, et al. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry, 2017 [Epub ahead of print]

    Google Scholar 

  49. Debnath M, Berk M. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia. Mol Neurobiol, 2017, 54(10): 8170–8178

    PubMed  Article  CAS  Google Scholar 

  50. Schiavone S, Trabace L. Inflammation, Stress Response, and Redox Dysregulation Biomarkers: Clinical Outcomes and Pharmacological Implications for Psychosis. Front Psychiatry,2017,8: 203

    PubMed  PubMed Central  Article  Google Scholar 

  51. Ovenden ES, McGregor NW, Emsley RA, et al. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 81:38–49

    PubMed  Article  CAS  Google Scholar 

  52. Uchida S, Yamagata H, Seki T, et al. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci, 2017 [Epub ahead of print]

    Google Scholar 

  53. Chatteqee P, Roy D, Rathi N. Epigenetic Drug Repositioning for Alzheimer's Disease Based on Epigenetic Targets in Human Interactome. J Alzheimers Dis, 2018,61(1): 53–65

    Article  CAS  Google Scholar 

  54. Czarny P, Wigner P, Galecki P, et al. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuropsychopharmacol Biol Psychiatry, 2018,80(Pt C): 309–321

    Google Scholar 

  55. Geiser E, Retsa C, Knebel JF, et al. The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients. Schizophr Res, 2017, 190:52–59

    PubMed  Article  Google Scholar 

  56. Famitafreshi H, Karimian M. Socialization alleviates burden of oxidative-stress in hippocampus and prefrontal cortex in morphine addiction period in male rats. Curr Mol Pharmacol, 2017 [Epub ahead of print]

    Google Scholar 

  57. Dixit S, Bernardo A, Walker JM, et al. Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. A ACS Chem Neurosci, 2015, 6(4): 570–581

    PubMed  Article  CAS  Google Scholar 

  58. Ward MS, Lamb J, May JM, et al. Behavioral and monoamine changes following severe vitamin C deficiency. J Neurochem, 2013, 124(3): 363–375

    PubMed  Article  CAS  Google Scholar 

  59. Chen Y, Curran CP, Nebert DW, et al. Effect of vitamin C deficiency during postnatal development on adult behavior: functional phenotype of Gulo-/-knockout mice. Genes Brain Behav, 2012,11(3): 269–277

    PubMed  Article  CAS  Google Scholar 

  60. Pierce MR, Diasio DL, Rodrigues LM, et al. Combined vitamin C and E deficiency induces motor defects in gulo(-/-)/SVCT2(+/-) mice. Nutr Neurosci, 2013, 16(4): 160–173

    PubMed  Article  CAS  Google Scholar 

  61. Li FJ, Shen L, Ji HF. Dietary intakes of vitamin E, vitamin C, and beta-carotene and risk of Alzheimer's disease: a meta-analysis. J Alzheimers Dis, 2012, 31(2): 253–258

    PubMed  Article  CAS  Google Scholar 

  62. Moretti M, Colla A, de Oliveira Balen G, et al. Ascorbic acid treatment, similarly to fluoxetine, reverses depressive-like behavior and brain oxidative damage induced by chronic unpredictable stress. J Psychiatr Res, 2012, 46(3): 331–340

    PubMed  Article  Google Scholar 

  63. Moretti M, Budni J, Freitas AE, et al. TNF-alpha-induced depressive-like phenotype and p38(MAPK) activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol, 2015, 25(6): 902–912

    PubMed  Article  CAS  Google Scholar 

  64. Moretti M, Budni J, Dos Santos DB, et al. Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci, 2013,49(1): 68–79

    PubMed  Article  CAS  Google Scholar 

  65. Shivavedi N, Kumar M, Tej G, et al. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res, 2017, 1674:1–9

    PubMed  Article  CAS  Google Scholar 

  66. Binfare RW, Rosa AO, Lobato KR, et al. Ascorbic acid administration produces an antidepressant-like effect: evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33(3): 530–540

    PubMed  Article  CAS  Google Scholar 

  67. Moretti M, Budni J, Freitas AE, et al. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res, 2014,48(1): 16–24

    PubMed  Article  Google Scholar 

  68. Moretti M, Freitas AE, Budni J, et al. Involvement of nitric oxide-cGMP pathway in the antidepressant-like effect of ascorbic acid in the tail suspension test. Behav Brain Res, 2011,225(1): 328–333

    PubMed  Article  CAS  Google Scholar 

  69. Rosa PB, Neis VB, Ribeiro CM, et al. Antidepressant-like effects of ascorbic acid and ketamine involve modulation of GABAA and GABAB receptors. Pharmacol Rep, 2016, 68(5): 996–1001

    PubMed  Article  CAS  Google Scholar 

  70. Moretti M, Budni J, Ribeiro CM, et al. Subchronic administration of ascorbic acid elicits antidepressant-like effect and modulates cell survival signaling pathways in mice. J Nutr Biochem, 2016, 38:50–56

    PubMed  Article  CAS  Google Scholar 

  71. Carr AC, Bozonet SM, Pullar JM, et al. Mood improvement in young adult males following supplementation with gold kiwifruit, a high-vitamin C food. J Nutr Sei, 2013,2:e24

    Article  CAS  Google Scholar 

  72. Zhang M, Robitaille L, Eintracht S, et al. Vitamin C provision improves mood in acutely hospitalized patients. Nutrition, 2011, 27(5): 530–533

    PubMed  Article  CAS  Google Scholar 

  73. Amr M, El-Mogy A, Shams T, et al. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J, 2013,12:31

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Brody S. High-dose ascorbic acid increases intercourse frequency and improves mood: a randomized controlled clinical trial. Biol Psychiatry, 2002, 52(4): 371–374

    PubMed  Article  CAS  Google Scholar 

  75. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sei, 2010, 47(1): 4–16

    Google Scholar 

  76. Marsman A, van den Heuvel MP, Klomp DW, et al. Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies. Schizophr Bull, 2013, 39(1): 120–129

    PubMed  Article  Google Scholar 

  77. Bowie CR, Harvey PD. Schizophrenia from a neuropsychiatric perspective. Mt Sinai J Med, 2006, 73(7): 993–998

    PubMed  Google Scholar 

  78. Yao JK, Reddy RD, van Kämmen DP. Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs, 2001, 15(4): 287–310

    PubMed  Article  CAS  Google Scholar 

  79. Do KQ, Cabungcal JH, Frank A, et al. Redox dysregulation, neurodevelopment, and schizophrenia. Curr OpinNeurobiol, 2009, 19(2): 220–230

    Article  CAS  Google Scholar 

  80. Wang JF, Shao L, Sun X, et al. Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord, 2009, 11(5): 523–529

    PubMed  Article  CAS  Google Scholar 

  81. Damazio LS, Silveira FR, Canever L, et al. The preventive effects of ascorbic acid supplementation on locomotor and acetylcholinesterase activity in an animal model of schizophrenia induced by ketamine. An Acad Bras Cienc, 2017, 89(2): 1133–1141

    PubMed  Article  Google Scholar 

  82. Hoffer LJ. Vitamin therapy in schizophrenia. Isr J Psychiatry Relat Sei, 2008, 45(1): 3–10

    Google Scholar 

  83. Castagne V, Rougemont M, Cuenod M, et al. Low brain glutathione and ascorbic acid associated with dopamine uptake inhibition during rat's development induce long-term cognitive deficit: relevance to schizophrenia. Neurobiol Dis, 2004, 15(1): 93–105

    PubMed  Article  CAS  Google Scholar 

  84. Dakhale GN, Khanzode SD, Khanzode SS, et al. Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology, 2005, 182(4): 494–498

    PubMed  Article  CAS  Google Scholar 

  85. Kessler RC, Ruscio AM, Shear K, et al. Epidemiology of anxiety disorders. Curr Top Behav Neurosci, 2010, 2:21–35

    PubMed  Article  Google Scholar 

  86. Kessler RC, Petukhova M, Sampson NA, et al. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res, 2012, 21(3): 169–184

    PubMed  PubMed Central  Article  Google Scholar 

  87. Craske MG, Stein MB, Eley TC, et al. Anxiety disorders. Nat Rev Dis Primers, 2017,3:17 024

    Article  Google Scholar 

  88. Rammal H, Bouayed J, Younos C, et al. Evidence that oxidative stress is linked to anxiety-related behaviour in mice. Brain Behav Immun, 2008, 22(8): 1156–1159

    PubMed  Article  CAS  Google Scholar 

  89. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res, 2010, 68(4): 261–275

    PubMed  Article  CAS  Google Scholar 

  90. de Oliveira IJ, de Souza W, Motta V, et al. Effects of Oral Vitamin C Supplementation on Anxiety in Students: A Double-Blind, Randomized, Placebo-Controlled Trial. Pak J Biol Sci, 2015, 18(1): 11–18

    PubMed  Article  CAS  Google Scholar 

  91. Puty B, Maximino C, Brasil A, et al. Ascorbic acid protects against anxiogenic-like effect induced by methylmercury in zebrafish: action on the serotonergic system. Zebrafish, 2014,11(4): 365–370

    PubMed  Article  CAS  Google Scholar 

  92. Hughes RN, Lowther CL, van Nobelen M. Prolonged treatment with vitamins C and E separately and together decreases anxiety-related open-field behavior and acoustic startle in hooded rats. Pharmacol Biochem Behav, 2011, 97(3): 494–499

    PubMed  Article  CAS  Google Scholar 

  93. Nahar Z, Sarwar MS, Safiqul Islam M, et al. Determination of serum antioxidant vitamins, glutathione and MDA levels in panic disorder patients. Drug Res, 2013, 63(8): 424–428

    Article  CAS  Google Scholar 

  94. Bartus RT, Dean RL 3rd, Beer B, et al. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4558): 408–414

    PubMed  Article  CAS  Google Scholar 

  95. Scarpini E, Cogiamanian F. Alzheimer's disease: from molecular pathogenesis to innovative therapies. Expert Rev Neurother, 2003, 3(5): 619–630

    PubMed  Article  CAS  Google Scholar 

  96. Smith MA, Perry G, Pryor WA. Causes and consequences of oxidative stress in Alzheimer's disease. Free Radic Biol Med, 2002,32(11): 1049

    PubMed  Article  CAS  Google Scholar 

  97. Coyle JT, Price DL, DeLong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science, 1983, 219(4589): 1184–1190

    PubMed  Article  CAS  Google Scholar 

  98. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDSADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984, 34(7): 939–944

    PubMed  Article  CAS  Google Scholar 

  99. Zhang L, Liu F, Sun X, et al. Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer's Disease. Anal Chem, 2017, 89(3): 1831–1837

    PubMed  Article  CAS  Google Scholar 

  100. Warner TA, Kang JQ, Kennard JA, et al. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease. Epilepsy Res, 2015, 110:20–25

    PubMed  Article  CAS  Google Scholar 

  101. Ide K, Yamada H, Kawasaki Y, et al. Peripheral Vitamin C Levels in Alzheimer's Disease: A Cross-Sectional Study. J Nutr Sci Vitaminol, 2016, 62(6): 432–436

    PubMed  Article  CAS  Google Scholar 

  102. Kennard JA, Harrison FE. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice. Behav Brain Res, 2014, 264:34–42

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Kook SY, Lee KM, Kim Y, et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis, 2014,5:el083

    Article  CAS  Google Scholar 

  104. Arlt S, Muller-Thomsen T, Beisiegel U, et al. Effect of one-year vitamin C-and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease. Neurochem Res, 2012, 37(12): 2706–2714

    PubMed  Article  CAS  Google Scholar 

  105. Basambombo LL, Carmichael PH, Cote S, et al. Use of Vitamin E and C Supplements for the Prevention of Cognitive Decline. Ann Pharmacother, 2017, 51(2): 118–124

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-fei Wu or Jian-guo Chen.

Additional information

This project was supported by grants from the Foundation for Innovative Research Groups of NSFC (No. 81721005), National Natural Science Foundation of China (No. 81773712, and No. 81473198), the National Basic Research Program of China (973 Program, No. 2014CB744601), and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT No. 13016).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, Qq., Shen, Tt., Wang, F. et al. Preventive and Therapeutic Potential of Vitamin C in Mental Disorders. CURR MED SCI 38, 1–10 (2018). https://doi.org/10.1007/s11596-018-1840-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1840-2

Key words

  • vitamin C
  • ascorbic acid
  • oxidative stress
  • Alzheimer's disease
  • major depressive disorder