Skip to main content
Log in

Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study evaluated the effects of sodium hypochlorite (NaOCl) with different concentrations and exposure time on the structural, compositional and mechanical properties of human dentin in vitro. Sixty dentin slabs were obtained from freshly extracted premolars, randomly distributed into four groups (n=15), and treated with 1%, 5%, 10% NaOCl and distilled water (control group), respectively, for a total of 60 min. Attenuated total reflection infrared (ATR-IR) spectroscopy, Raman spectroscopy and X-ray diffraction (XRD) were carried out before, 10 min and 60 min after the treatment. Scanning electron microscopy (SEM) and flexural strength test were conducted as well. The results showed that dentins experienced morphological alterations in the NaOCl groups, but not in the control group. Two-way repeated-measures analysis of variance revealed that the carbonate:mineral ratio (C:M), Raman relative intensity (RRI), a-axis, c-axis length and full width at half maximum (FWHM) with the increase of time and concentration in the NaOCl groups were not significantly different from those in the control group (P>0.05). Nevertheless, the mineral:matrix ratio (M:M) increased and the flexural strength declined with the increase of concentration and the extension of time in the NaOCl groups (P<0.05). Additionally, it was found that the M:M and the flexural strength remained unchanged after 1% NaOCl treatment (P>0.05), and the morphology changes were unnoticeable within 10 min in 1% NaOCl group. These results indicated that NaOCl has no significant effects on the inorganic mineral of human dentin; but it undermines and eliminates the organic content concentration- and time-dependently, which in turn influences the flexural strength and toughness of dentins. In addition, an irrigation of 1% NaOCl within 10 min can minimize the effects of NaOCl on the structural and mechanical properties of dentin during root canal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoward P. A histochemical study of the apparent deamination of proteins by sodium hypochlorite. Histochemistry, 1975,45(3):213–226

    Article  CAS  PubMed  Google Scholar 

  2. Qin QH, Swain MV. A micro-mechanics model of dentin mechanical properties. Biomaterials, 2004,25(20):5081–5090

    Article  CAS  PubMed  Google Scholar 

  3. Pascon FM, Kantovitz KR, Sacramento PA, et al. Effect of sodium hypochlorite on dentine mechanical properties. A review. J Dent, 2009,37(12):903–908

    Article  CAS  PubMed  Google Scholar 

  4. Perez-Heredia M, Ferrer-Luque CM, Gonzalez-Rodriguez MP. The effectiveness of different acid irrigating solutions in root canal cleaning after hand and rotary instrumentation. J Endod, 2006,32(10):993–997

    Article  PubMed  Google Scholar 

  5. Khaleel HY, Al-Ashaw AJ, Yang Y, et al. Quantitative comparison of calcium hydroxide removal by EndoActivator, ultrasonic and ProTaper file agitation techniques: an in vitro study. J Huazhong Univ Sci Technolog Med Sci, 2013,33(1):142–145

    Article  CAS  PubMed  Google Scholar 

  6. Dutner J, Mines P, Anderson A. Irrigation trends among American association of endodontists members: A web-based survey. J Endod, 2012,38(1):37–40

    Article  PubMed  Google Scholar 

  7. Retamozo B, Shabahang S, Johnson N, et al. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod, 2010,36(3):520–523

    Article  PubMed  Google Scholar 

  8. Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod, 2004,30(11):785–787

    Article  PubMed  Google Scholar 

  9. Sirtes G, Waltimo T, Schaetzle M, et al. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod, 2005,31(9):669–671

    Article  PubMed  Google Scholar 

  10. Di Renzo M, Ellis TH, Sacher E, et al. A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: II. Deproteination. Biomaterials, 2001,22(8):793–797

    Article  PubMed  Google Scholar 

  11. Poudyal S, Pan WH, Zhan L. Efficacy of solution form of ethylenediaminetetraacetic acid on removing smear layer of root canal at different exposure time in vitro. J Huazhong Univ Sci Technolog Med Sci, 2014,34(3):420–424

    Article  CAS  PubMed  Google Scholar 

  12. Sauro S, Mannocci F, Tay FR, et al. Deproteinization effects of NaOCl on acid-etched dentin in clinically-relevant vs prolonged periods of application. A confocal and environmental scanning electron microscopy study. Oper Dent, 2009,34(2):166–173

    PubMed  Google Scholar 

  13. Marshall GW, Yucel N, Balooch M, et al. Sodium hypochlorite alterations of dentin and dentin collagen. Surf Sci, 2001,491(3):444–455

    Article  CAS  Google Scholar 

  14. Zhang K, Kim YK, Cadenaro M, et al. Effects of different exposure times and concentrations of sodium hypochlorite/ethylenediaminetetraacetic acid on the structural integrity of mineralized dentin. J Endod, 2010,36(1):105–109

    Article  CAS  PubMed  Google Scholar 

  15. Zhang K, Tay FR, Kim YK, et al. The effect of initial irrigation with two different sodium hypochlorite concentrations on the erosion of instrumented radicular dentin. Dent Mater, 2010,26(6):514–523

    Article  PubMed  Google Scholar 

  16. Hu X, Peng Y, Sum CP, et al. Effects of concentrations and exposure times of sodium hypochlorite on dentin deproteination: attenuated total reflection Fourier transform infrared spectroscopy study. J Endod, 2010,36(12):2008–2011

    Article  PubMed  Google Scholar 

  17. Jiang T, Ma X, Wang Y, et al. Effects of hydrogen peroxide on human dentin structure. J Dent Res, 2007,86(11):1040–1045

    Article  CAS  PubMed  Google Scholar 

  18. Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt, 2000,5(3):259–268

    Article  CAS  PubMed  Google Scholar 

  19. Jiang T, Ma X, Wang Y, et al. Investigation of the effects of 30% hydrogen peroxide on human tooth enamel by Raman scattering and laser-induced fluorescence. J Biomed Opt, 2008,13(1):014019

    Article  PubMed  Google Scholar 

  20. Amaechi BT, Higham SM. Quantitative light-induced fluorescence: a potential tool for general dental assessment. J Biomed Opt, 2002,7(1):7–13

    Article  PubMed  Google Scholar 

  21. Grigoratos D, Knowles J, Ng YL, et al. Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its flexural strength and elastic modulus. Int Endod J, 2001,34(2):113–119

    Article  CAS  PubMed  Google Scholar 

  22. Roman-Lopez J, Correcher V, Garcia-Guinea J, et al. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen. Spectrochim Acta A Mol Biomol Spectrosc, 2014,120(24):610–615

    Article  CAS  PubMed  Google Scholar 

  23. Yamini D, Devanand Venkatasubbu G, Kumar J, et al. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc, 2014,117(3):299–303

    Article  CAS  PubMed  Google Scholar 

  24. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials, 2007,28(19):3043–3054

    Article  CAS  PubMed  Google Scholar 

  25. Legeros RZ, Trautz OR, Legeros JP, et al. Apatite crystallites: effects of carbonate on morphology. Science, 1967,155(3768):1409–1411

    Article  CAS  PubMed  Google Scholar 

  26. Sydney-Zax M, Mayer I, Deutsch D. Carbonate content in developing human and bovine enamel. J Dent Res, 1991,70(5):913–916

    Article  CAS  PubMed  Google Scholar 

  27. Sa Y, Chen D, Liu Y, et al. Effects of two in-office bleaching agents with different pH values on enamel surface structure and color: an in situ vs. in vitro study. J Dent, 2012,(40 Suppl 1):e26–e34

    Google Scholar 

  28. Sa Y, Liang S, Ma X, et al. Compositional, structural and mechanical comparisons of normal enamel and hypomaturation enamel. Acta Biomater, 2014,10(12):5169–5177

    Article  CAS  PubMed  Google Scholar 

  29. Wei W, Mao J, Peng Z, et al. High-resolution X-ray microdiffraction analysis of NaOH-treated dentin. J Appl Crystalllogr, 2009,42616–620

    Google Scholar 

  30. Sakae T, Mishima H, Kozawa Y. Changes in bovine dentin mineral with sodium-hypochlorite treatment. J Dent Res, 1988,67(9):1229–1234

    Article  CAS  PubMed  Google Scholar 

  31. Borges AFS, Bittar RA, Pascon FM, et al. NaOCl effects on primary and permanent pulp chamber dentin. J Dent, 2008,36(9):745–753

    Article  CAS  PubMed  Google Scholar 

  32. Staniszewska E, Malek K, Baranska M. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc, 2014,118(24):981–986

    Article  CAS  PubMed  Google Scholar 

  33. Fattibene P CA, de Coste V, Sacchetti A, et al. A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin. Phys Med Biol, 2005,50(6):1095–1108

    Article  CAS  PubMed  Google Scholar 

  34. Goetz H DH, White DJ, Klukowska MA. Effects of elevated hydrogen peroxide ‘strip’ bleaching on surface and subsurface enamel including subsurface histomorphology, micro-chemical composition and fluorescence changes. J Dent, 2007,35(6):457–466

    Article  CAS  Google Scholar 

  35. Pascon FM, Kantovitz KR, Soares LES, et al. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive X-ray fluorescence spectrometry, and scanning electron microscopy study. J Biomed Opt, 2012,17(7):075008

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Fei NIU, Xinyu SHEN and Xiao-dong ZHOU at the Institute of Analytical and Biomedical Science, Wuhan University for their guidance and assistance in the detection techniques.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Sa  (撒 悦) or Tao Jiang  (蒋 滔).

Additional information

This study was supported by the National Natural Science Foundation of China (No. 81470771, No. 81500887), and the Natural Science Foundation of Hubei Province (No. 2013CFA068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Tf., Feng, Xw., Gao, Yx. et al. Effects of different concentrations and exposure time of sodium hypochlorite on the structural, compositional and mechanical properties of human dentin. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 568–576 (2017). https://doi.org/10.1007/s11596-017-1774-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1774-0

Key words

Navigation