Skip to main content
Log in

Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Esophageal cancer is a common malignant tumor, whose pathogenesis and prognosis factors are not fully understood. This study aimed to discover the gene clusters that have similar functions and can be used to predict the prognosis of esophageal cancer. The matched microarray and RNA sequencing data of 185 patients with esophageal cancer were downloaded from The Cancer Genome Atlas (TCGA), and gene co-expression networks were built without distinguishing between squamous carcinoma and adenocarcinoma. The result showed that 12 modules were associated with one or more survival data such as recurrence status, recurrence time, vital status or vital time. Furthermore, survival analysis showed that 5 out of the 12 modules were related to progression-free survival (PFS) or overall survival (OS). As the most important module, the midnight blue module with 82 genes was related to PFS, apart from the patient age, tumor grade, primary treatment success, and duration of smoking and tumor histological type. Gene ontology enrichment analysis revealed that “glycoprotein binding” was the top enriched function of midnight blue module genes. Additionally, the blue module was the exclusive gene clusters related to OS. Platelet activating factor receptor (PTAFR) and feline Gardner-Rasheed (FGR) were the top hub genes in both modeling datasets and the STRING protein interaction database. In conclusion, our study provides novel insights into the prognosis-associated genes and screens out candidate biomarkers for esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zheng R, Zeng H, et al. Annual report on status of cancer in China, 2011. Chin J Can Res (Chinese), 2015,27(1):2–12

    Article  Google Scholar 

  2. Blot WJ, McLaughlin JK. The changing epidemiology of esophageal cancer. Semin Oncol, 1999,26(5 Suppl 15):2–8

    CAS  PubMed  Google Scholar 

  3. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Baddoo M, Han C, et al. Gene network analysis reveals a novel 22-gene signature of carbon metabolism in hepatocellular carcinoma. Oncotarget, 2016,31(7):49232–49245

    Google Scholar 

  5. Presson AP, Yoon NK, Bagryanova L, et al. Protein expression based multimarker analysis of breast cancer samples. BMC Cancer, 2011,11:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Upton A, Arvanitis TN. Using evolutional properties of gene networks in understanding survival prognosis of glioblastoma. IEEE T Inf Technol B, 2014,18(3):810–816

    Google Scholar 

  7. Zhao X, Cai H, Wang X, et al. Discovery of signature genes in gastric cancer associated with prognosis. Neoplasma, 2016, 63(2):239–245

    CAS  PubMed  Google Scholar 

  8. Jia X, Miao Z, Li W, et al. Cancer-risk module identification and module-based disease risk evaluation: a case study on lung cancer. PloS one, 2014,9(3):e92395

    Article  Google Scholar 

  9. Wan YW, Allen GI, Liu Z. TCGA2STAT: simple TCGA data access for integrated statistical analysis in R. Bioinformatics, 2016,32(6):952–954

    Article  CAS  PubMed  Google Scholar 

  10. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods, 2015,12(2):115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hastie T, Narasimhan B, Chu G. Impute: Imputation for microarray data. In R package version 1.46.0, 2016

  12. Kosinski M, Biecek P. RTCGA: The cancer genome atlas data integration. In R package version 1.2.2, 2015

  13. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw, 2012,46(11):i11

    Article  PubMed  PubMed Central  Google Scholar 

  14. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol, 2007,1:54

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Raton M, Rodriguez-Alvarez MX, Cadarso-Suarez C et al. Optimal cutpoints: An R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw, 2014,61(8):1–36

    Article  Google Scholar 

  16. Hu Z, Hung JH, Wang Y, et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res, 2009,37:W115–W121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jensen LJ, Kuhn M, Stark M, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res, 2009,37:D412–D416

    Article  CAS  PubMed  Google Scholar 

  18. Jacomy M, Venturini T, Heymann S, et al. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PloS one, 2014,9(6):e98679

    Article  Google Scholar 

  19. Fang H, Gough J. The ‘dnet’ approach promotes emerging research on cancer patient survival. Genome Med, 2014,6(8):64

    PubMed  PubMed Central  Google Scholar 

  20. Chase PB, Yang JM, Thompson FH, et al. Regional mapping of the human platelet-activating factor receptor gene (PTAFR) to 1p35->p34.3 by fluorescence in situ hybridization. Cytogenet Cell Genet, 1996,72(2–3):205–207

    Article  CAS  PubMed  Google Scholar 

  21. Agrawal V, Jaiswal MK, Ilievski V, et al. Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod, 2014,91(5):119

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Q, An Y, Yuan Q, et al. Identification of allelic expression imbalance genes in human hepatocellular carcinoma through massively parallel DNA and RNA sequencing. Med Oncol, 2016,33(4):38

    Article  CAS  PubMed  Google Scholar 

  23. Kim HS, Han HD, Armaiz-Pena GN, et al. Functional roles of Src and Fgr in ovarian carcinoma. Clin Can Res, 2011,17(7):1713–1721

    Article  CAS  Google Scholar 

  24. Hu Y, Liu Y, Pelletier S, et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet, 2004,36(5):453–461

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Bezverbnaya K, Zhao T, et al. Involvement of the HCK and FGR src-family kinases in FCRL4-mediated immune regulation. J Immunol, 2015,194(12):5851–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Sun  (孙 茜).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, Q. Weighted gene co-expression network analysis of gene modules for the prognosis of esophageal cancer. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 319–325 (2017). https://doi.org/10.1007/s11596-017-1734-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1734-8

Key words

Navigation