Skip to main content
Log in

Essential oil from Siegesbeckia pubescens induces apoptosis through the mitochondrial pathway in human HepG2 cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Siegesbeckia pubescens (SP) has been used as a traditional medicine for the treatment of and inflammatory diseases. However, the activities of SP against hepatocellular carcinoma and the related mechanisms remain unclear. The present study aimed to examine the effects of the essential oil of SP (SPEO) on the proliferation of hepatocellular carcinoma cells and the possible mechanisms. The growth inhibition of HepG2 cells was analyzed by MTT assay. Hoechst 33258 and fluorescence microscopy were utilized to observe the nuclear morphological changes of apoptotic cells. Flow cytometry was used to detect cell apoptosis and cell cycle. The expressions of the target proteins were detected by Western blotting. The results showed that SPEO obviously inhibited the proliferation of HepG2 cells in a dose-dependent manner. SPEO activated a series of apoptotic proteins in HepG2 cells, increasing expression levels of Bax, caspase-3 and caspase-9, and decreasing the bcl-2 expression level. SPEO displayed promising anti-hepatocellular carcinoma activities in vitro, partly by inducing apoptosis in HepG2 cells through activating the mitochondrial pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fitzmaurice C, Dicker D, Pain A, et al. The global burden of cancer 2013. JAMA Oncology, 2015,1(4): 505–527

    Article  PubMed  Google Scholar 

  2. Yin BP, Li BS. Research progress on anti-hepatoma mechanisms of traditional Chinese medicine. World Clin Drugs, 2010,7: 429–432

    Google Scholar 

  3. Wang Y, Wang J, Wang H, et al. Novel taxane derivatives from Taxus wallichiana with high anticancer potency on tumor cells. Chem Biol Drug Des, 2016,88(4): 556–561

    Article  CAS  PubMed  Google Scholar 

  4. Lu Y, Hou SX, Chen T. Advances in the study of vincristine: an anticancer ingredient from Catharanthus roseus. Zhongguo Zhong Yao Za Zhi (Chinese), 2003,28(11): 1006–1009

    CAS  Google Scholar 

  5. Wang J, Cai Y, Wu Y. Antiinflammatory and analgesic activity of topical administration of Siegesbeckia pubescens. Pak J Pharm Sci, 2008,21(2): 89–91

    PubMed  Google Scholar 

  6. Li H, Kim JY, Hyeon J, et al. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens. Phytother Res, 2011,25(9): 1323–1327

    PubMed  Google Scholar 

  7. Huh JE, Baek YH, Lee JD, et al. Therapeutic effect of Siegesbeckia pubescens on cartilage protection in a rabbit collagenase-induced model of osteoarthritis. J Pharmacol Sci, 2008,107(3): 317–328

    Article  CAS  PubMed  Google Scholar 

  8. Chang CC, Hsu HF, Huang KH, et al. Anti-proliferative effects of Siegesbeckia orientalis ethanol extract on human endometrial RL-95 cancer cells. Molecules, 2014,19(12): 19980–19994

    Article  PubMed  Google Scholar 

  9. Song P, Wang Q, Lv J, et al. HPLC-based activity profiling of anti-hepatocellular carcinoma constituents from the Tibetan medicine, Caragana tibetica. J Huazhong Univ Sci Technol Med Sci, 2015,35(3): 450–455

    Article  CAS  PubMed  Google Scholar 

  10. Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. J Am Soc Mass Spect, 1997,6(8): 671–672

    Google Scholar 

  11. Agnihotri VK, Thappa RK, Meena B, et al. Essential oil composition of aerial parts of Angelica glauca growing wild in North-West Himalaya. Phytochemistry, 2004, 65(16): 2411–2413

    Article  CAS  PubMed  Google Scholar 

  12. Tabanca N, Demirci B, Ozek T, et al. Gas chromatographic–mass spectrometric analysis of essential oils from Pimpinella species gathered from Central and Northern Turkey. J Chromatogr A, 2006,1117(2): 194–205

    Article  CAS  PubMed  Google Scholar 

  13. Roshan S, Banafa A. Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3. J Huazhong Univ Sci Technol Med Sci, 2014,34(3): 330–336

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Zou J, Huang Y, et al. Kinetin inhibits proliferation of hepatic stellate cells by interrupting cell cycle and induces apoptosis by down-regulating ratio of Bcl-2/Bax. J Huazhong Univ Sci Technol Med Sci, 2015,35(5): 672–678

    Article  CAS  PubMed  Google Scholar 

  15. Yang JA, Li JQ, Shao LM, et al. Puerarin inhibits proliferation and induces apoptosis in human glioblastoma cell lines. Int J Clin Exp Med, 2015,8(6):10132

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai X, Ye T, Liu C, et al. Luteolin induced G2 phase cell cycle arrest and apoptosis on non-small cell lung cancer cells. Toxicol In Vitro, 2011,25(7): 1385–1391

    Article  CAS  PubMed  Google Scholar 

  17. Kim HJ, Ko HY, Choi SW, et al. Anti-angiogenic effects of Siegesbeckia glabrescens are mediated by suppression of the Akt and p70S6K-dependent signaling pathways. Oncol Rep, 2015,33(2): 699–704

    PubMed  Google Scholar 

  18. Yang T, Yao S, Zhang X, et al. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways. Drug Des Dev Ther, 2016, 10: 1389

    Article  Google Scholar 

  19. Vilarinho S, Taddei T. Therapeutic strategies for hepatocellular carcinoma: new advances and challenges. Curr Treat Options Gastroenterol, 2015,13(2): 219–234

    Article  PubMed  Google Scholar 

  20. Qiu N, Liu X, Tang J, et al. CDDP treatment promoting tumor growth and metastasis. Nanomedicine, 2016,12(2): 467–468

    Google Scholar 

  21. Bates DJP, Lewis LD, Eastman A, et al. Vincristine activates c-Jun N-terminal kinase in chronic lymphocytic leukaemia in vivo. Br J Clin Pharmacol, 2015,80(3): 493–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Z, Wang A, Li H, et al. STAT3-dependent TXNDC17 expression mediates Taxol resistance through inducing autophagy in human colorectal cancer cells. Gene, 2016,584(1): 75–82

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Zhao H Y, Jiang D, et al. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro. Biochem Bioph Res Commun, 2016,472(3): 477–481

    Article  CAS  Google Scholar 

  24. Tang X, Dai H, Zhu Y, et al. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity. Am J Transl Res, 2014,6(5): 528–537

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mai WY, Lin MF. Induction of apoptosis by homoharringtonine in G1 phase human chronic myeloid leukemic cells. Chin Med J, 2005,118(6): 487–492

    CAS  PubMed  Google Scholar 

  26. Zhou KY, Ji HL, Shi PF. Effect of matrine on cell apoptosis and proliferation and the apoptosis related proteins of human medulloblastoma D341 cells in vitro. Chin J Appl Physiol (Chinese), 2016,32(1): 74–77

    Google Scholar 

  27. Zhang C, Wu S, Lou Z, et al. Research progress on chemical composition, pharmacological action & clinical application of Herba Siegesbeckiae. Anhui Med Pharm J (Chinese), 2011,15(3): 274–276

    Google Scholar 

  28. Wang R, Shi YP, Wang QZ, et al. Chemical constituents from traditional Chinese medicine Siegesbeckia pubescens. Zhongguo Zhong Yao Za Zhi (Chinese), 2014,39(24): 4811–4815.

    CAS  Google Scholar 

  29. Xiong S, Mu T, Wang G, et al. Mitochondria-mediated apoptosis in mammals. Protein Cell, 2014,5(10): 737–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu C, Geng X, Wan S, et al. Cecropin-P17, an analog of Cecropin B, inhibits human hepatocellular carcinoma cell HepG-2 proliferation via regulation of ROS, Caspase, Bax, and Bcl-2. J Pept Sci, 2015,21(8): 661–668

    Article  CAS  PubMed  Google Scholar 

  31. O’Neill KL, Huang K, Zhang J, et al. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Gene Dev, 2016, 30(8): 973–988

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zou J, Chen Q, Jin X, et al. Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells. Toxicology, 2011,285(3): 104–113

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Wang  (王 强) or Xin-zhou Yang  (杨新洲).

Additional information

Both authors contributed equally to this work.

This project was financially supported by grants from the Major Research Project of Education Department of Hubei Province of China (No. D20131103), National Natural Science Foundation of China (No. 81573561) and the Introduction Project of Hangzhou Medical College, Zhejiang Province, China (No. 2015B08).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, D., Guo, Kw., Xu, C. et al. Essential oil from Siegesbeckia pubescens induces apoptosis through the mitochondrial pathway in human HepG2 cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 87–92 (2017). https://doi.org/10.1007/s11596-017-1699-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1699-7

Key words

Navigation