Skip to main content
Log in

Dietary restriction reduces blood lipids and ameliorates liver function of mice with hyperlipidemia

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Dietary restriction (DR) can delay senescence, prolong lifespan of mammals and improve their learning-memory activity. The purpose of the study was to explore the effects of DR on hypolipidemic action and liver function of mice with hyperlipidemia. To investigate these effects, hyperlipidemia mouse models were established with high-fat diet (HFD) (34% of energy), then randomly divided into HFD group, DR30% group and DR50% group. Mice in DR30% and DR50% group were respectively supplied with HFD as much as about 70% and 50% of the consumption of HFD in the mice of HFD group. Rats in control group were fed routinely. After DR for 5 weeks, the average body weight, liver weight, liver index, serum lipids and glucose levels in both DR groups decreased significantly as compared with the HFD group (P<0.05 or P<0.01), so did alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH) levels and the ratio of LDL-C/HDL-C in the DR50% group (P<0.05 or P<0.01). Histopathology examination of liver tissues further proved ameliorative effect of DR on liver function. Western blotting showed that DR significantly increased the expression of silent mating type information regulation 2 homolog 1 (SIRT1) in liver and adipose, while notably decreased the expression of peroxisome proliferators-activated receptors-gamma (PPARγ) in adipose (P<0.05 or P<0.01). The increase of SIRT1 and decrease of PPARγ may be a mechanism by which DR reduces blood lipids and ameliorates liver function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore B. Symposium 1: overnutrition. consequences and solutions-non-alcoholic fatty liver disease: the hepatic consequences of obesity and the metabolic syndrome. Proc Nutr Soc, 2010,69: 211–220

    CAS  Google Scholar 

  2. Baek JH, Kim SJ, Kang HG, et al. Galectin-3 activates PPAR gamma and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology, 2015, 156(1): 147–156

    Article  PubMed  Google Scholar 

  3. Kuo YH, Lin CH, Shih CC. Ergostatrien-3 beta-ol from antrodia camphorata inhibits diabetes and hyperlipidemia infat-diet treated mice via regulation of hepatic related genes, glucose transporter 4, and AMP-activated protein kinase phosphorylation. J Agr Food Chem, 2015,63(9): 2479–2489

    Article  CAS  Google Scholar 

  4. Samartin S, Chandra RK. Obesity, overnutrition and the immune system. Nutr Res, 2001,21(1): 243–262

    Article  CAS  Google Scholar 

  5. Lin S, Thomas T, Storlien L, et al. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obesity, 2000,24(5): 639–646

    Article  CAS  Google Scholar 

  6. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab, 2007,6(5): 414–421

    Article  CAS  PubMed  Google Scholar 

  7. Hong Y, Deng C, Zhang J, et al. Neuroprotective effect of granulocyte colony-stimulating factor in a focal cerebral ischemic rat model with hyperlipidemia. J Huazhong Univ Sci Technol Med Sci, 2012,32(6): 872–878

    Article  CAS  PubMed  Google Scholar 

  8. Hipkiss AR. On the mechanisms of ageing suppression by dietary restriction-is persistent glycolysis the problem? Mech Ageing Dev, 2006,127(1): 8–15

  9. Mair W, Goymer P, Pletcher SD, et al. Demography of dietary restriction and death in drosophila. Science, 2003,301(5640): 1731–1733

    Article  CAS  PubMed  Google Scholar 

  10. Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 2002,418(6895): 344–348

    Article  CAS  PubMed  Google Scholar 

  11. Gao HT, Shao LX, Cheng WZ, et al. The effects of dietary restriction on weight, lipid-lowering and learning and memory ability in hyperlipidemia mice. Zhejiang Prev Med (Chinese), 2013,25(3): 1–4

    Google Scholar 

  12. Lin BQ, Zeng ZY, Yang SS, et al. Dietary restriction suppresses tumor growth, reduces angiogenesis, and improves tumor microenvironment in human non-small-cell lung cancer xenografts. Lung Cancer, 2013,79(2): 111–117

    Article  PubMed  Google Scholar 

  13. Gao HT, Shao LX, Sun GJ. Research advances in learning-memory and anti-tumor ability of dietary restriction. J Zhejiang Norm Univ (Nat Sci) (Chinese), 2014,37(2): 99–107

    Google Scholar 

  14. Devassy JG, Caligiuri SPB, Mayengbam S, et al. Dietary restriction in moderately obese rats improves body size and glucose handling without the renal and hepatic alterations observed with a high-protein diet. Appl Physiol Nutr Metab, 2015,40(4): 334–342

    Article  CAS  PubMed  Google Scholar 

  15. Fok WC, Bokov A, Gelfond J, et al. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell, 2014,13(2): 311–319

    Article  CAS  PubMed  Google Scholar 

  16. Yu Z, Wang R, Fok WC, et al. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver. J Gerontol A-Biol, 2015,70(4): 410–420

    Article  Google Scholar 

  17. Jeon TI, Lim BO, Yu BP, et al. Effect of dietary restriction on age-related increase of liver susceptibility to peroxidation in rats. Lipids, 2001,36(6): 589–593

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka K, Higami Y, Tsuchiya T, et al. Aging increases DNase gamma, an apoptosis-related endonuclease, in rat liver nuclei: effect of dietary restriction. Exp Gerontol, 2004,39(2): 195–202

    Article  CAS  PubMed  Google Scholar 

  19. Grattagliano I, Portincasa P, Cocco T, et al. Effect of dietary restriction and N-acetylcysteine supplementation on intestinal mucosa and liver mitochondrial redox status and function in aged rats. Exp Gerontol, 2004,39(9): 1323–1332

    Article  CAS  PubMed  Google Scholar 

  20. Gao HT, Shao LX, Cheng WZ, et al. Effects of dietary restriction on antioxidant capacity and Sirt1 expression in hyperlipideima mice. Acta Nutrimenta Sinica (Chinese), 2014,36(2): 168–173

    CAS  Google Scholar 

  21. Hamelet J, Demuth K, Paul JL, et al. Hyperhomo-cy-steinemia due to cystathionine beta synthase deficiency induces dysregulation of genes involved in hepatic lipid homeostasis in mice. J Hepatol, 2007,46(1): 151–159

    Article  CAS  PubMed  Google Scholar 

  22. Raval J, Lyman S, Nitta T, et al. Basal reactive oxygen species determine the susceptibility to apoptosis in cirrhotic hepatocytes. Free Radic Biol Med, 2006,41(11): 1645–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wen H, Yang HJ, An YJ, et al. Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies. Mol Cell Proteomics, 2013,12(3): 575–586

    Article  CAS  PubMed  Google Scholar 

  24. Aydin C, Ince E, Koparan S, et al. Protective effects of long term dietary restriction on swimming exercise-induced oxidative stress in the liver, heart and kidney of rat. Cell Biochem Funct, 2007,25(2): 129–137

    Article  CAS  PubMed  Google Scholar 

  25. Gao HT, Shao LX, Cheng WZ, et al. Effects of dietary restriction on lowing blood lipid and learning-memory behavious of hyperlipidemia mice. J Zhejiang Norm Univ (Nat Sci) (Chinese), 2013,36(3): 337–341

    CAS  Google Scholar 

  26. Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 2010,143(5): 802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. GB14924.3-2010 Laboratory animals-nutrients for formula feeds. Beijing: Standards Press of China, 2010

  28. Huang YH, Zhang QH. Genistein reduced the neural apoptosis in the brain of ovariectomised rats by modulating mitochondrial oxidative stress. Brit J Nutr, 2010,104(09): 1297–1303

    Article  CAS  PubMed  Google Scholar 

  29. Li XR, Wang LJ, Li YH, et al. Polysorbates as novel lipid-modulating candidates for reducing serum total cholesterol and low-density lipoprotein levels in hyperlipidemic C57BL/6J mice and rats. Eur J Pharmacol, 2011,660(2-3):468–475

    Article  CAS  PubMed  Google Scholar 

  30. Beltaifa L, Chaouachi A, Zerifi R, et al. Walk-run transition speed training as an efficient exercise adjunct to dietary restriction in the management of obesity: a prospective intervention pilot study. Obes Facts, 2011,4(1): 45–52

    Article  PubMed  Google Scholar 

  31. Chen SD, Zhou HH, Lin MT, et al. Research of influence and mechanism of combining exercise with diet control on a model of lipid metabolism rat induced by high fat diet. Lipids Health Dis, 2013,12(1): 21–24

    Article  CAS  Google Scholar 

  32. Gong WH, Zheng WX, Wang J, et al. Coexistence of hyperlipidemia and acute cerebral ischemia/reperfusion induces severe liver damage in a rat model. World J Gastroenterol, 2012,18(35): 4934–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao X, Wu JX, Dong ZY, et al. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone. Br J Nutr, 2010,103(4): 608–616

    Article  CAS  PubMed  Google Scholar 

  34. Grattagliano I, Palmieri VO, Portincasa P, et al. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem, 2008,19(8): 491–504

    Article  CAS  PubMed  Google Scholar 

  35. Yang XR, Wat E, Wang YP, et al. Effect of dietary cocoa tea (camellia ptilophylla) supplementation on high-fat diet-induced obesity, hepatic steatosis, and hyperlipidemia in mice. Evid Based Complement Alternat Med, 2013;2013:783860

    PubMed  PubMed Central  Google Scholar 

  36. Wu YZ, Yu YH, Szabo A, et al. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet, PloS One, 2014,9(3):e92618

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hinnouho GM, Czernichow S, Dugravot A, et al. Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J, 2015,36(9): 551–559

    Article  PubMed  Google Scholar 

  38. Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1a and SIRT1. Nature, 2005,434(7029): 113–118

    Article  CAS  PubMed  Google Scholar 

  39. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell, 2006,127(6): 1109–1122

    Article  CAS  PubMed  Google Scholar 

  40. Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage. P Natl Acad Sci USA, 2008,105(28): 9793–9798

    Article  CAS  Google Scholar 

  41. Kitada M, Takeda A, Nagai T, et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflamm-atory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res, 2011, 2011: 908185

    Article  PubMed  PubMed Central  Google Scholar 

  42. Inoue M, Ohtake T, Motomura W, et al. Increased expression of PPAR? in high fat diet-induced liver steatosis in mice. Biochem Bioph Res Co, 2005,336(1): 215–222

    Article  CAS  Google Scholar 

  43. Jones JR, Barrick C, Kim K-A, et al. Deletion of PPAR? in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. P Natl Acad Sci USA, 2005,102(17): 6207–6212

    Article  CAS  Google Scholar 

  44. Gu M, Fan S, Liu G, et al. Extract of wax gourd peel prevents high-fat diet-induced hyperlipidemia in C57BL/6 mice via the inhibition of the PPARgamma pathway. Evid Based Complement Alternat Med, 2013;2013:342561

    PubMed  PubMed Central  Google Scholar 

  45. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-g-am-m-a. Nature, 2004,429(6993): 771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linden MA, Lopez KT, Fletcher JA, et al. Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats. Appl Physiol Nutr Metab, 2015,40(10): 1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Xu  (许 茜) or Lin-xiang Shao  (邵邻相).

Additional information

This project was supported by a grant from the Social Development Research Program of Science and Technology Agency of Jiangsu Province (No. BE2015646).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Ht., Cheng, Wz., Xu, Q. et al. Dietary restriction reduces blood lipids and ameliorates liver function of mice with hyperlipidemia. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 79–86 (2017). https://doi.org/10.1007/s11596-017-1698-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1698-8

Key words

Navigation