Skip to main content
Log in

In silico investigation of agonist activity of a structurally diverse set of drugs to hPXR using HM-BSM and HM-PNN

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The human pregnane X receptor (hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards hPXR. Heuristic method (HM)-Best Subset Modeling (BSM) and HM-Polynomial Neural Networks (PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain (AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved (for HM-BSM, r 2=0.881, q 2LOO =0.797, q 2EXT =0.674; for HM-PNN, r 2=0.882, q 2LOO =0.856, q 2EXT =0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to hPXR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dussault I, Forman BM. The nuclear receptor PXR: a master regulator of “homeland” defense. Crit Rev Eukaryot Gene Expr, 2012, 12(1): 53–64

    Google Scholar 

  2. Staudinger J, Liu Y, Madan A, et al. Coordinate regulation of xenobiotic and bile acid homeostasis by pregnane X receptor. Drug Metab Dispos, 2001, 29(11): 1467–1472

    CAS  PubMed  Google Scholar 

  3. Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol, 1999, 56(6): 1329–1339

    CAS  PubMed  Google Scholar 

  4. Blumberg B, Sabbagh WJ, Juguilon H, et al. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev, 1998, 12(10): 3195–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodwin B, Moore LB, Stoltz CM, et al. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol, 2001, 60(3): 427–431

    CAS  PubMed  Google Scholar 

  6. Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol, 1999, 39: 1–17

    Article  CAS  PubMed  Google Scholar 

  7. Watkins RE, Wisely GB, Moore LB, et al. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science, 2001, 292(5525): 2329–2333

    Article  CAS  PubMed  Google Scholar 

  8. Watkins RE, Noble SM, Redinbo MR. Structural insights into the promiscuity and function of the human pregnane X receptor. Curr Opin Drug Discov Dev, 2002, 5(1): 150–158

    CAS  Google Scholar 

  9. Fuhr U. Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet, 2000, 38(6): 493–504

    Article  CAS  PubMed  Google Scholar 

  10. Teotico DG, Bischof JJ, Peng L, et al. Structural basis of human pregnane X receptor activation by the hops constituent colupulone. Mol Pharmacol, 2008, 74(6): 1512–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang YM, Yang XS, Sun C, et al. Quantitative structure-activity relationship of compounds binding to estrogen receptor β based on heuristic method. Sci China Ser B, 2011, 54(1): 237–243

    Article  CAS  Google Scholar 

  12. Ekins S, Kortagere S, Iyer M, et al. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR. PLoS Comput Biol, 2009, 5(12): 1–12

    Article  Google Scholar 

  13. Wang Y, Liu H, Zhao C, et al. Quantitative structure-activity relationship models for prediction of the toxicity of polybrominated diphenyl ether congeners. Environ Sci Technol, 2005, 39(13): 4961–4966

    Article  CAS  PubMed  Google Scholar 

  14. Liu H, Papa E, Gramatica P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem Res Toxicol, 2006, 19(11): 1540–1548

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Xie Q, Li X, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers to human thyroid receptors α: in vitro and in silico investigations. Environ Health Perspect, 2010, 118(5): 602–606

    Article  CAS  PubMed  Google Scholar 

  16. Zhang YM, Yang XS, Sun C, et al. QSAR prediction of antagonistic activity of PCBs towards human PXR by using heuristic method and best subset modeling. Sci China Ser B, 2012, 55(7): 1459–1466

    Article  CAS  Google Scholar 

  17. Rao HB, Wang YY, Zeng XY, et al. In silico identification of human pregnane X receptor activators from molecular descriptors by machine learning approaches. Chemomet Intell Lab Syst, 2012, 118: 271–279

    Article  CAS  Google Scholar 

  18. Chen S, He N, Chen W, et al. Molecular insights into the promiscuous interaction of human pregnane X receptor (hPXR) with diverse environmental chemicals and drug compounds. Chemosphere, 2014, 96: 138–145

    Article  CAS  PubMed  Google Scholar 

  19. Xiao L, Nickbarg E, Wang W, et al. Evaluation of in vitro PXR-based assays and in silico modeling approaches for understanding the binding of a structurally diverse set of drugs to PXR. Biochem Pharmacol, 2011, 81(5): 669–679

    Article  CAS  PubMed  Google Scholar 

  20. Ekins S, Chang C, Mani S, et al. Human pregnane X receptor antagonists and agonists define molecular requirements for different binding sites. Mol Pharmacol, 2007, 72(3): 592–603

    Article  CAS  PubMed  Google Scholar 

  21. Sybyl Version 7.3, Tripos Associates, St. Louis (MO), 2006.

  22. Tetko IV, Aksenova TI, Volkovich VV, et al. Polynomial neural network for linear and non-linear model selection in quantitative-structure activity relationship studies on the internet. SAR QSAR Environ Res, 2000, 11(3-4): 263–280

    Article  CAS  PubMed  Google Scholar 

  23. Todeschini R, Consonni V. Handbook of molecular descriptors, Wiley-VCH, Weinheim, 2000.

    Book  Google Scholar 

  24. de Melo EB. Multivariate SAR/QSAR of 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase (FAS) inhibitors. Eur J Med Chem, 2010, 45(12): 5817–5826

    Article  PubMed  Google Scholar 

  25. Ngan CH, Beglov D, Rudnitskaya AN, et al. The structural basis of pregnane X receptor binding promiscuity. Biochemistry, 2009, 48(48): 11572–11581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balaban AT, Ciubotariu D, Medeleanu MJ. Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors. Chem Inf Comput Sci, 1991, 31: 517–523

    Article  CAS  Google Scholar 

  27. Matter H, Anger LT, Giegerich C, et al. Development of in silico filters to predict activation of the pregnane X receptor (PXR) by structurally diverse drug-like molecules. Bioorg Med Chem, 2012, 20(18): 5352–5365

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-shu Yang  (杨旭曙) or Xiao Han  (韩 晓).

Additional information

The project was supported by grants from the Natural Science Research Project of Institution of Higher Education of Jiangsu Province (No. 11KJB180006) and National Natural Science Foundation of China (No. 21277074 and No. 81302458).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Ym., Chang, Mj., Yang, Xs. et al. In silico investigation of agonist activity of a structurally diverse set of drugs to hPXR using HM-BSM and HM-PNN. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 463–468 (2016). https://doi.org/10.1007/s11596-016-1609-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1609-4

Key words

Navigation