Skip to main content
Log in

A systematic review of animal and clinical studies on the use of scaffolds for urethral repair

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Replacing urethral tissue with functional scaffolds has been one of the challenging problems in the field of urethra reconstruction or repair over the last several decades. Various scaffold materials have been used in animal studies, but clinical studies on use of scaffolds for urethral repair are scarce. The aim of this study was to review recent animal and clinical studies on the use of different scaffolds for urethral repair, and to evaluate these scaffolds based on the evidence from these studies. PubMed and OVID databases were searched to identify relevant studies, in conjunction with further manual search. Studies that met the inclusion criteria were systematically evaluated. Of 555 identified studies, 38 were included for analysis. It was found that in both animal and clinical studies, scaffolds seeded with cells were used for repair of large segmental defects of the urethra, such as in tubular urethroplasty. When the defect area was small, cell-free scaffolds were more likely to be applied. A lot of pre-clinical and limited clinical evidence showed that natural or artificial materials could be used as scaffolds for urethral repair. Urinary tissue engineering is still in the immature stage, and the safety, efficacy, cost-effectiveness of the scaffolds are needed for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamzon J, Perin L, Koh CJ. Current status of tissue engineering in pediatric urology. Curr Opin Urol, 2008,18(4):404–407

    Article  PubMed  Google Scholar 

  2. Atala A. Recent applications of regenerative medicine to urologic structures and related tissues. Curr Opin Urol, 2006,16(4):305–309

    Article  PubMed  Google Scholar 

  3. Tian H, Bharadwaj S, Liu Y, et al. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A, 2010,16(5):1769–1779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Wood D, Southgate J. Current status of tissue engineering in urology. Curr Opin Urol, 2008,18(6):564–569.

    Article  PubMed  Google Scholar 

  5. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res, 2007,100(9): 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  6. Reed CR, Han L, Andrady A, et al. Composite tissue engineering on polycaprolactone nanofiber scaffolds. Ann Plast Surg, 2009,62(5):505–512

    Article  CAS  PubMed  Google Scholar 

  7. Parks J 4th, Kath M, Gabrick K, et al. Nanotechnology applications in plastic and reconstructive surgery: a review. Plast Surg Nurs, 2012,32(4):156–164

    Article  PubMed  Google Scholar 

  8. Atala A. Recent developments in tissue engineering and regenerative medicine. Curr Opin Pediatr, 2006,18(2): 167–171

    Article  PubMed  Google Scholar 

  9. Horn J, de Haan RJ, Vermeulen M, et al. Nimodipine in animal model experiments of focal cerebral ischemia: a systematic review. Stroke, 2001,32(10):2433–2438

    Article  CAS  PubMed  Google Scholar 

  10. Pound P, Ebrahim S, Sandercock P, et al. Where is the evidence that animal research benefits humans? BMJ, 2004,328(7438):514–517

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nuininga JE, van Moerkerk H, Hanssen A, et al. Rabbit urethra replacement with a defined biomatrix or small intestinal submucosa. Eur Urol, 2003,44(2):266–271

    Article  CAS  PubMed  Google Scholar 

  12. Kawano PR, Fugita OE, Yamamoto HA, et al. Comparative study between porcine small intestinal submucosa and buccal mucosa in a partial urethra substitution in rabbits. J Endourol, 2012,26(5):427–432

    Article  PubMed  Google Scholar 

  13. Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology, 1998,52(1):138–142

    Article  CAS  PubMed  Google Scholar 

  14. Chung YG, Tu D, Franck D, et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PloS One, 2014,9(3): e91592

    Article  PubMed Central  PubMed  Google Scholar 

  15. El-Assmy A, El-Hamid MA, Hafez AT. Urethral replacement: a comparison between small intestinal submucosa grafts and spontaneous regeneration. BJU Int, 2004,94(7):1132–1135

    Article  PubMed  Google Scholar 

  16. Fu Q, Deng CL, Liu W, et al. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int, 2007,99(5):1162–1165

    Article  PubMed  Google Scholar 

  17. Fu Q, Deng CL, Song XF, et al. Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell. Asian J Androl, 2008,10(5):719–722

    Article  PubMed  Google Scholar 

  18. De Filippo RE, Kornitzer BS, Yoo JJ, et al. Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen Med, 2015,9(3):257–264

    Article  PubMed  Google Scholar 

  19. Gu GL, Xia SJ, Zhang J, et al. Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model. Urol Int, 2012,89(3):358–364.

    Article  CAS  PubMed  Google Scholar 

  20. Orabi H, AbouShwareb T, Zhang Y, et al. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol, 2013,63(3):531–538

    Article  PubMed Central  PubMed  Google Scholar 

  21. Li CL, Liao WB, Yang SX, et al. Urethral reconstruction using bone marrow mesenchymal stem cell-and smooth muscle cell-seeded bladder acellular matrix. Transplanta Proc, 2013,45(9):3402–3407

    Article  CAS  Google Scholar 

  22. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology, 1999,54(3):407–410

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Xu Y, Xie H, et al. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A, 2014,20(3–4):774–784

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Li C, Xu YM, Liu ZS, et al. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology, 2013,81(5):1075–1080.

    Article  PubMed  Google Scholar 

  25. Huang JW, Xie MK, Zhang Y, et al. Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model. Urology, 2014,84(6): 1499–1505

    Article  PubMed  Google Scholar 

  26. Chun SY, Kim BS, Kwon SY, et al. Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. J Korean Med Sci, 2015,30(3):301–307

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sievert KD, Bakircioglu ME, Nunes L, et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol, 2000,163(6):1958–1965

    Article  CAS  PubMed  Google Scholar 

  28. Sievert KD, Wefer J, Bakircioglu ME, et al. Heterologous acellular matrix graft for reconstruction of the rabbit urethra: histological and functional evaluation. J Urol, 2001,165(6 Pt 1):2096–2102

    Article  CAS  PubMed  Google Scholar 

  29. Shokeir A, Osman Y, Gabr M, et al. Acellular matrix tube for canine urethral replacement: is it fact or fiction? J Urol, 2004,171(1):453–456

    Article  PubMed  Google Scholar 

  30. Han P, Song C, Yang YR, et al. Urethral acellular matrix graft for repairing urethral defect in rabbits. Nan Fang Yi Ke Da Xue Xue Bao(Chinese), 2009,29(1):124–127

    Google Scholar 

  31. Parnigotto PP, Gamba PG, Conconi MT, et al. Experimental defect in rabbit urethra repaired with acellular aortic matrix. Urol Res, 2000,28(1):46–55

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Liu T, Yang L, et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury modelsJ. Med Sci Monit, 2014,20: 2430–2438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Xie M, Song L, Wang J, et al. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res, 2013,184(2): 774–781

    Article  CAS  PubMed  Google Scholar 

  34. Xie M, Xu Y, Song L, et al. Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model. J Surg Res, 2014,188(1): 1–7

    Article  CAS  PubMed  Google Scholar 

  35. Liu CX, Lin YY, Li HL, et al. Application of silk fibroin film for repairing rabbit urethral defect. Nan Fang Yi Ke Da Xue Xue Bao(Chinese). 2007,27(2):184–187

    PubMed  Google Scholar 

  36. Kanatani I, Kanematsu A, Inatsugu Y, et al. Fabrication of an Optimal Urethral Graft Using Collagen-Sponge Tubes Reinforced with Copoly(L-Lactide/e-Caprolactone) Fabric. Tissue Eng, 2007,13(12):2933–2940

    Article  CAS  PubMed  Google Scholar 

  37. Micol LA, Arenas da Silva LF, Geutjes PJ, et al. In-vivo performance of high-density collagen gel tubes for urethral regeneration in a rabbit model. Biomaterials, 2012,33(30):7447–7455

    Article  CAS  PubMed  Google Scholar 

  38. Mantovani F, Trinchieri A, Castelnuovo C, et al. Reconstructive urethroplasty using porcine acellular matrix. Eur Urol, 2003,44(5):600–602

    Article  PubMed  Google Scholar 

  39. le Roux PJ. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J Urol, 2005,173(1):140–143

    Article  PubMed  Google Scholar 

  40. Hauser S, Bastian PJ, Fechner G, et al. Small intestine submucosa in urethral stricture repair in a consecutive series. Urology, 2006,68(2):263–266

    Article  PubMed  Google Scholar 

  41. Fiala R, Vidlar A, Vrtal R, et al. Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol, 2007,51(6):1702–1708

    Article  PubMed  Google Scholar 

  42. Palminteri E, Berdondini E, Colombo F, et al. Small intestinal submucosa (SIS) graft urethroplasty: short-term results. Eur Urol, 2007,51(6):1695–1701

    Article  PubMed  Google Scholar 

  43. Atala A, Guzman L, Retik AB. A novel inert collagen matrix for hypospadias repair. J Urol, 1999,162(3 Pt 2):1148–1151

    Article  CAS  PubMed  Google Scholar 

  44. El-Kassaby AW, Retik AB, Yoo JJ, et al. Urethral stricture repair with an off-the-shelf collagen matrix. J Urol, 2003,169(1):170–173

    Article  CAS  PubMed  Google Scholar 

  45. el-Kassaby A, Abou Shwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urol, 2008,179(4):1432–1436

    Article  PubMed  Google Scholar 

  46. Bhargava S, Patterson JM, Inman RD, et al. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol, 2008,53(6):1263–1269

    Article  PubMed  Google Scholar 

  47. Fossum M, Skikuniene J, Orrego A, et al. Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells. Acta Paediatr, 2012,101(7):755–760

    Article  PubMed  Google Scholar 

  48. Raya-Rivera A, Esquiliano DR, Yoo JJ, et al. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet, 2011,377(9772):1175–1182

    Article  PubMed Central  PubMed  Google Scholar 

  49. Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury, 2007,38(Suppl 1): 33–37

    Article  Google Scholar 

  50. Carson CC. Urethroplasty: a model for international progress in urology. Contemp Urol, 2006,18(3):1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Tian  (田 虹).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, N., Li, Wj. & Tian, H. A systematic review of animal and clinical studies on the use of scaffolds for urethral repair. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 111–117 (2016). https://doi.org/10.1007/s11596-016-1551-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1551-5

Key words

Navigation