Skip to main content
Log in

Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Synaptic vesicle protein 2A (SV2A) involvement has been reported in the animal models of epilepsy and in human intractable epilepsy. The difference between pharmacosensitive epilepsy and pharmacoresistant epilepsy remains poorly understood. The present study aimed to observe the hippocampus SV2A protein expression in amygdale-kindling pharmacoresistant epileptic rats. The pharmacosensitive epileptic rats served as control. Amygdaloid-kindling model of epilepsy was established in 100 healthy adult male Sprague-Dawley rats. The kindled rat model of epilepsy was used to select pharmacoresistance by testing their seizure response to phenytoin and phenobarbital. The selected pharmacoresistant rats were assigned to a pharmacoresistant epileptic group (PRE group). Another 12 pharmacosensitive epileptic rats (PSE group) served as control. Immunohistochemistry, real-time PCR and Western blotting were used to determine SV2A expression in the hippocampus tissue samples from both the PRE and the PSE rats. Immunohistochemistry staining showed that SV2A was mainly accumulated in the cytoplasm of the neurons, as well as along their dendrites throughout all subfields of the hippocampus. Immunoreactive staining level of SV2A-positive cells was 0.483±0.304 in the PRE group and 0.866±0.090 in the PSE group (P<0.05). Real-time PCR analysis demonstrated that 2-ΔΔCt value of SV2A mRNA was 0.30±0.43 in the PRE group and 0.76±0.18 in the PSE group (P<0.05). Western blotting analysis obtained the similar findings (0.27±0.21 versus 1.12±0.21, P<0.05). PRE rats displayed a significant decrease of SV2A in the brain. SV2A may be associated with the pathogenesis of intractable epilepsy of the amygdaloid-kindling rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol, 2003,16(2):165–170

    Article  PubMed  Google Scholar 

  2. Schuele SU, Luders HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol, 2008,7 (6):514–524

    Article  PubMed  Google Scholar 

  3. Noyer M, Gillard M, Matagne A, et al. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes. Eur J Pharmacol, 1995,286(2):137–146

    Article  CAS  PubMed  Google Scholar 

  4. Crowder KM, Gunther JM, Jones TA, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc Natl Acad Sci U S A, 1999,96(26): 15268–15273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Janz R, Goda Y, Geppert M, et al. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron, 1999,24(4):1003–1016

    Article  CAS  PubMed  Google Scholar 

  6. van Vliet EA, Aronica E, Redeker S, et al. Decreased expression of synaptic vesicle protein 2A, the binding site for levetiracetam, during epileptogenesis and chronic epilepsy. Epilepsia, 2009,50(3):422–433

    Article  PubMed  Google Scholar 

  7. Feng G, Xiao F, Lu Y, et al. Down-regulation synaptic vesicle protein 2A in the anterior temporal neocortex of patients with intractable epilepsy. J Mol Neurosci, 2009,39(3):354–359

    Article  CAS  PubMed  Google Scholar 

  8. Glauser TA, Ayala R, Elterman RD, et al. Double-blind placebo-controlled trial of adjunctive levetiracetam in pediatric partial seizures. Neurology, 2006,66(11):1654–1660

    Article  CAS  PubMed  Google Scholar 

  9. Mohanraj R, Parker PG, Stephen LJ, et al. Levetiracetam in refractory epilepsy: a prospective observational study. Seizure, 2005,14(1):23–27

    Article  PubMed  Google Scholar 

  10. French J, Edrich P, Cramer JA. A systematic review of the safety profile of levetiracetam: a new antiepileptic drug. Epilepsy Res, 2001,47(12):77–90

    Article  CAS  PubMed  Google Scholar 

  11. Grosso S, Cordelli DM, Franzoni E, et al. Efficacy and safety of levetiracetam in infants and young children with refractory epilepsy. Seizure, 2007,16(4):345–350

    Article  CAS  PubMed  Google Scholar 

  12. Opp J, Tuxhorn I, May T, et al. Levetiracetam in children with refractory epilepsy: a multicenter open label study in Germany. Seizure, 2005,14(7):476–484

    Article  PubMed  Google Scholar 

  13. Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci USA, 2004,101 (26):9861–9866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Gillard M, Chatelain P, Fuks B. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein. Eur J Pharmacol, 2006,536(1–2):102–108

    Article  CAS  PubMed  Google Scholar 

  15. Schulze-Bonhage A. Brivaracetam for the treatment of epilepsy. Expert Opin Pharmacother, 2011,12(12):1959–1966

    Article  CAS  PubMed  Google Scholar 

  16. Bennett B, Matagne A, Michel P, et al. Seletracetam (UCB 44212). Neurotherapeutics, 2007,4(1):117–122

    Article  CAS  PubMed  Google Scholar 

  17. von Rosenstiel P. Brivaracetam (UCB 34714). Neurotherapeutics, 2007,4(1):84–87

    Article  Google Scholar 

  18. Bajjalieh SM, Frantz GD, Weimann JM, et al. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci, 1994,14(9):5223–5235

    CAS  PubMed  Google Scholar 

  19. Janz R, Sudhof TC. SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience, 1999,94(4): 1279–1290

    Article  CAS  PubMed  Google Scholar 

  20. Toering ST, Boer K, de Groot M, et al. Expression patterns of synaptic vesicle protein 2A in focal cortical dysplasia and TSC-cortical tubers. Epilepsia, 2009,50(6): 1409–1418

    Article  CAS  PubMed  Google Scholar 

  21. Wu G, Hong Z, Li Y, et al. Effects of low-frequency hippocampal stimulation on gamma-amino butyric acid type B receptor expression in pharmacoresistant amygdaloid kindling epileptic rats. Neuromodulation, 2012,16(2):105–113

    Article  PubMed  Google Scholar 

  22. Freeman FG, Jarvis MF. The effect of interstimulation interval on the assessment and stability of kindled seizure thresholds. Brain Res Bull, 1981,7(6):629–633

    Article  CAS  PubMed  Google Scholar 

  23. Lopez-Meraz ML, Neri-Bazan L, Rocha L. Low frequency stimulation modifies receptor binding in rat brain. Epilepsy Res, 2004,59(2–3):95–105

    Article  CAS  PubMed  Google Scholar 

  24. Racine R, Okujava V, Chipashvili S. Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol, 1972,32(3):295–299

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Wu ZC, Yu JT, et al. Mode-dependent effect of high-frequency electrical stimulation of the anterior thalamic nucleus on amygdala-kindled seizures in rats. Neuroscience, 2012,217:113–122

    Article  CAS  PubMed  Google Scholar 

  26. Loscher W, Reissmuller E, Ebert U. Anticonvulsant efficacy of gabapentin and levetiracetam in phenytoinresistant kindled rats. Epilepsy Res, 2000,40(1):63–77

    Article  CAS  PubMed  Google Scholar 

  27. Brandt C, Bethmann K, Gastens AM, et al. The multidrug transporter hypothesis of drug resistance in epilepsy: Proof-of-principle in a rat model of temporal lobe epilepsy. Neurobiol Dis, 2006,24(1):202–211

    Article  CAS  PubMed  Google Scholar 

  28. Buckley K, Kelly RB. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol, 1985,100(4):1284–1294

    Article  CAS  PubMed  Google Scholar 

  29. Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol, 2001,3(8):691–698

    Article  CAS  PubMed  Google Scholar 

  30. Meehan AL, Yang X, Mc Adams BD, et al. A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol, 2011,106(3):1227–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Kaminski RM, Matagne A, Leclercq K, et al. SV2A protein is a broad-spectrum anticonvulsant target: functional correlation between protein binding and seizure protection in models of both partial and generalized epilepsy. Neuropharmacology, 2008,54(4):715–720

    Article  CAS  PubMed  Google Scholar 

  32. van Vliet EA, van Schaik R, Edelbroek PM, et al. Development of tolerance to levetiracetam in rats with chronic epilepsy. Epilepsia, 2008,49(7):1151–1159

    Article  PubMed  Google Scholar 

  33. Sills GJ. SV2A in epilepsy: the plot thickens. Epilepsy Curr, 2010,10(2):47–49

    Article  PubMed Central  PubMed  Google Scholar 

  34. Gorter JA, van Vliet EA, Aronica E, et al. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci, 2001,13(4):657–669

    Article  CAS  PubMed  Google Scholar 

  35. Son YJ, Scranton TW, Sunderland WJ, et al. The synaptic vesicle protein SV2 is complexed with an alpha5-containing laminin on the nerve terminal surface. J Biol Chem, 2000,275(1):451–460

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-feng Wu  (伍国锋).

Additional information

This research was supported by grants from National Natural Science Foundation of China (No. 81241129/H0913) and Guizhou Province Governor Special Funds (No. 1065-09) and Guizhou High-level Personnel Scientific Funds (No. TZJF- 2010-054).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zhou, F., Wang, Lk. et al. Synaptic vesicle protein2A decreases in amygdaloid-kindling pharmcoresistant epileptic rats. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 716–722 (2015). https://doi.org/10.1007/s11596-015-1496-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1496-0

Key words

Navigation