Skip to main content
Log in

Effects of Bu-Shen-An-Tai recipe and its two components on endometrial morphology during peri-implantation in superovulated mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The aim of this study was to investigate the effect of Bu-Shen-An-Tai recipe (BSATR) and its two components (Bushen recipe, and Huoxue recipe) on endometrial morphology during peri-implantation in superovulated mice. Mice were randomly divided into five groups, including the normal (N), model (M), Bushen (BS), Huoxue (HX) and Bu-Shen-An-Tai (BH) groups. The uteri were collected on day 4 of pregnancy, and the endometrium thickness, microvessel density (MVD) and number of pinopodes observed. Compared with the M group, the endometrial thickness in the BS, HX and BH groups was significantly increased and there was a significant difference in endometrial thickness between the BS and the BH groups. The mean MVD was significantly lower in the M group than in the N group, and there was a significant increase in MVD in the BS, HX and BH groups as compared with the M group. Compared with the M group, the pinopode scores in the endometrium were significantly increased in the HX and BH groups; and the BS group had significantly higher pinipode scores than the HX and BH groups. In conclusion, the results of the present study demonstrated that the recipes (Bushen, Huoxue and BSATR) could improve the endometrial environment by regulating the endometrial thickness, MVD and the number of pinopodes at the window of implantation. Moreover, the Huoxue recipe and the BSATR were more efficient than the Bushen recipe, with the BSATR tending to have the most beneficial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De los Santos M, Mercader A, Galan A, et al. Implantation rates after two, three, or five days of embryo culture. Placenta, 2003, 24(Supple B):S13–S19

    Article  PubMed  Google Scholar 

  2. Margalioth EJ, Ben-Chetrit A, Gal M, et al. Investigation and treatment of repeated implantation failure following IVF-ET. Hum Reprod, 2006, 21(12):3036–3043

    Article  PubMed  CAS  Google Scholar 

  3. Edwards RG. Implantation, interception and contraception. Hum Reprod, 1994, 9(6):985–995

    PubMed  CAS  Google Scholar 

  4. Ledee-Bataille N, Lapree-Delage G, Taupin JL, et al. Concentration of leukaemia inhibitory factor (LIF) in uterine flushing fluid is highly predictive of embryo implantation. Hum Reprod, 2002, 17(1):213–218

    Article  PubMed  CAS  Google Scholar 

  5. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci USA, 1993, 90(21):10159–10162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Carson DD, Bagchi I, Dey SK, et al. Embryo implantation. Dev Bio, 2000, 223(2):217–237

    Article  CAS  Google Scholar 

  7. Paria B, Reese J, Das SK, et al. Deciphering the cross-talk of implantation: advances and challenges. Science, 2002, 296(5576):2185–2188

    Article  PubMed  CAS  Google Scholar 

  8. Check JH, Choe JK, Katsoff D, et al. Controlled ovarian hyperstimulation adversely affects implantation following in vitro fertilization-embryo transfer. J Assist Reprod Genet, 1999, 16(8):416–420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Movaghar B, Askarian S. Expression of e-cadherin, leukemia inhibitory factor and progesterone receptor in mouse blastocysts after ovarian stimulation. Cell J, 2012, 14(3):225–230

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Basir GS, O W S, Ng EH, et al. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod, 2001, 16(3):435–440

    Article  PubMed  CAS  Google Scholar 

  11. Bourgain C, Devroey P. The endometrium in stimulated cycles for IVF. Hum Reprod Update, 2003, 9(6):515–522

    Article  PubMed  Google Scholar 

  12. Ertzeid G, Storeng R. The impact of ovarian stimulation on implantation and fetal development in mice. Hum Reprod, 2001, 16(2):221–225

    Article  PubMed  CAS  Google Scholar 

  13. Carlone DL, Rider V. Embryonic modulation of basic fibroblast growth factor in the rat uterus. Biol Reprod, 1993, 49(4):653–665

    Article  PubMed  CAS  Google Scholar 

  14. Charnock-Jones DS, Kaufmann P, Mayhew TM. Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta, 2004, 25(2–3):103–113

    Article  PubMed  CAS  Google Scholar 

  15. Red-Horse K, Drake PM, Fisher SJ. Human pregnancy: the role of chemokine networks at the fetal-maternal interface. Expert Rev Mol Med, 2004, 6(11):1–14

    Article  PubMed  Google Scholar 

  16. Deng SR, Li J, Zhang ZQ, et al. DS147 improves pregnancy in mice with embryo implantation dysfunction induced by controlled ovarian stimulation. J Huazhong Univer Scid Technol [Med Sci], 2013, 33(4):573–580

    Article  CAS  Google Scholar 

  17. Nardo LG, Sabatini L, Rai R, et al. Pinopode expression during human implantation. Eur J Obstet Gynecol Reprod Biol, 2002, 101(2):104–108

    Article  PubMed  CAS  Google Scholar 

  18. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod, 1999, 14(Suppl 2): 99–106

    Article  PubMed  Google Scholar 

  19. Nikas G, Develioglu OH, Toner JP, et al. Endometrial pinopodes indicate a shift in the window of receptivity in IVF cycles. Hum Reprod, 1999, 14(3):787–792

    Article  PubMed  CAS  Google Scholar 

  20. Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity. Ann N Y Acad Sci, 2003, 997:120–123

    Article  PubMed  Google Scholar 

  21. Nilsson O. Ultrastructure of mouse uterine surface epithelium under different estrogenic influences. 2. Early effect of estrogen administered to spayed animals. J Ultrastruct Res, 1958, 2(1):73–95

    Article  PubMed  CAS  Google Scholar 

  22. Johannisson E, Nilsson L. Scanning electron microscopic study of the human endometrium. Fertil Steril, 1972, 23(9): 613–625

    PubMed  CAS  Google Scholar 

  23. Martel D, Frydman R, Glissant M, et al. Scanning electron microscopy of postovulatory human endometrium in spontaneous cycles and cycles stimulated by hormone treatment. J Endocrinol, 1987, 114(2):319–24

    Article  PubMed  CAS  Google Scholar 

  24. Bentin-Ley U, Sjogren A, Nilsson L, et al. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod, 1999, 14(2):515–520

    Article  PubMed  CAS  Google Scholar 

  25. Aplin J D. Embryo implantation: the molecular mechanism remains elusive. Reprod Biomed Online, 2006, 13(6): 833–839

    Article  PubMed  CAS  Google Scholar 

  26. Kabir-Salmani M, Nikzad H, Shiokawa S, et al. Secretory role for human uterodomes (pinopods): secretion of LIF. Mol Hum Reprod, 2005, 11(8):553–559

    Article  PubMed  CAS  Google Scholar 

  27. Stavreus-Evers A, Aghajanova L, Brismar H, et al. Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol Hum Reprod, 2002, 8(8):765–769

    Article  PubMed  CAS  Google Scholar 

  28. Nikas G, Aghajanova L. Endometrial pinopodes: some more understanding on human implantation? Reprod Biomed Online, 2002, 4(Suppl 3):18–23

    Article  PubMed  Google Scholar 

  29. Albertson K. The use of traditional Chinese medicine for treating female infertility. Clayton College of Natural Health, Birmingham, AL, 2006

    Google Scholar 

  30. Alfred A, Ried K. Traditional Chinese medicine—women’s experiences in the treatment of infertility. Aust Fam Physician, 2011, 40(9):718–722

    PubMed  Google Scholar 

  31. Lewis R, The infertility cure: the ancient Chinese wellness program for getting pregnant and having healthy babies. 2008: Hachette Digital, Inc.

    Google Scholar 

  32. Maciocia G, Livingstone C. Obstetrics & gynecology in Chinese medicine. 1998: Churchill Livingstone.

    Google Scholar 

  33. Noll A A, Wilms S, Chinese medicine in fertility disorders. 2009: Thieme.

    Google Scholar 

  34. Ried K, Stuart K. Efficacy of traditional Chinese herbal medicine in the management of female infertility: a systematic review. Complement Ther Med, 2011, 19(6):319–331

    Article  PubMed  Google Scholar 

  35. Jia Y, Meng Y, Zhang M. Comparative study of bushenantai recipe and its two components on blastocyst implantation of controlled ovarian hyperstimulation. Zhongxiyi Jiehe Yanjin (Chinese), 2010, 2(6):288–293

    Google Scholar 

  36. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat, 1995, 36(2): 169–180

    Article  PubMed  CAS  Google Scholar 

  37. Usadi RS, Murray MJ, Bagnell RC, et al. Temporal and morphologic characteristics of pinopod expression across the secretory phase of the endometrial cycle in normally cycling women with proven fertility. Fertil Steril, 2003, 79(4):970–974

    Article  PubMed  Google Scholar 

  38. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet, 2006, 7(3):185–199

    Article  PubMed  Google Scholar 

  39. Murray MJ, Meyer WR, Zaino R J, et al. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril, 2004, 81(5):1333–1343

    Article  PubMed  Google Scholar 

  40. Zhang X, Chen CH, Confino E, et al. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril, 2005, 83(2): 336–340

    Article  PubMed  Google Scholar 

  41. Abdalla H, Brooks A, Johnson M, et al. Endometrial thickness: a predictor of implantation in ovum recipients? Human Reproduction, 1994, 9(2):363–365

    PubMed  CAS  Google Scholar 

  42. Noyes N, Liu HC, Sultan K, et al. Implantation: Endometrial thickness appears to be a significant factor in embryo implantation in in-vitro fertilization. Hum Reprod 1995, 10(4):919–922

    PubMed  CAS  Google Scholar 

  43. Barker D. Developmental origins of adult health and disease. J Epidemiol Community Health, 2004, 58(2):114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Norwitz ER. Defective implantation and placentation: laying the blueprint for pregnancy complications. Reprod Biomed Online, 2007, 14(1):101–109

    PubMed  Google Scholar 

  45. Tianwen X, Daoda C. Serum vascular endothelial growth factor-C and vascular endothelial growth factor level in patients with colorectal carcinoma and clinical significance. J Huazhong Univer Sci Technol [Med Sci], 2006, 26(3):329–331

    Article  Google Scholar 

  46. Chen W, Lu Y, Wu J, et al. Beta-elemene inhibits melanoma growth and metastasis via suppressing vascular endothelial growth factor-mediated angiogenesis. Cancer Chemother Pharmacol, 2011, 67(4):799–808

    Article  PubMed  CAS  Google Scholar 

  47. Dey S, Lim H, Das S K, et al. Molecular cues to implantation. Endocr Rev, 2004, 25(3):341–373

    Article  PubMed  CAS  Google Scholar 

  48. Kolb BA, Najmabadi S, Paulson RJ. Ultrastructural characteristics of the luteal phase endometrium in patients undergoing controlled ovarian hyperstimulation. Fertil Steril, 1997, 67(4):625–630

    Article  PubMed  CAS  Google Scholar 

  49. Develioglu OH, Hsiu JG, Nikas G, et al. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil Steril, 1999, 71(6):1040–1047

    Article  PubMed  CAS  Google Scholar 

  50. Wang L, Zhou GB, Liu P, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA, 2008, 105(12):4826–4831

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-min Zhang  (张明敏).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 30873347).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Dd., Zheng, Ch., Gong, P. et al. Effects of Bu-Shen-An-Tai recipe and its two components on endometrial morphology during peri-implantation in superovulated mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 768–774 (2014). https://doi.org/10.1007/s11596-014-1350-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1350-9

Key words

Navigation