Antioxidative protective effect of icariin on the FeSO4/H2O2-damaged human sperm based on confocal raman micro-spectroscopy

Summary

Oxidative stress is implicated in male infertility and significantly higher reactive oxygen species are detected in 25% of infertile males. Although different agents of various alternative medicines, including traditional Chinese medicine, have been tried with varying success, evidence remains limited on whether and how much herbs or supplements might help increase the anti-oxidant ability of the sperm. This study examined the anti-oxidative effects of icariin, a flavonoid isolated from Herba Epimedii, on the human sperm. We prepared the FeSO4/H2O2-damaged human sperms, which were co-cultured with icariin in vitro, and then observed the changes of the sperm by employing Raman micro-spectroscopy. The results showed that Raman mapping with a 514 nm excitation laser allowed clear differentiation of the nucleus, neck, and, in particular, the mitochondria-rich middle piece of a human sperm cell. The effect of icariin on different organelles of the sperm was quantified by localized spectral Raman signatures obtained within milli-seconds, and icariin could keep the “Raman fingerprint” of the human sperm the same as the control groups, suggesting that icariin could protect the human sperm from being damaged by FeSO4/H2O2. Icariin may serve as a tonifying and replenishing agent of herbal origin for enhancing reproductive functions.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Tawadrous GA, Aziz AA, Mostafa T. Seminal soluble fas relationship with oxidative stress in infertile men with varicocele. Urology, 2013, 82(4):820–823

    PubMed  Article  Google Scholar 

  2. 2

    Foksinski M, Gackowski D, Rozalski R, et al. Effects of basal level of antioxidants on oxidative DNA damage in humans. Eur J Nutr, 2007, 46(3):174–180

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Guz J, Gackowski D, Foksinski M, et al. Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. PLoS One, 2013, 8(7): e68490

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. 4

    Pahune PP, Choudhari AR, Muley PA, The total antioxidant power of semen and its correlation with the fertility potential of human male subjects. J Clin Diagn Res, 2013, 7(6):991–995

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Kilarkaje N, Mousa AM, Al-Bader MM, et al. Antioxidants enhance the recovery of three cycles of bleomycin, etoposide, and cisplatin-induced testicular dysfunction, pituitary-testicular axis, and fertility in rats. Fertil Steril, 2013, 100(4):1151–1159

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Liang HR, Vuorela P, Vuorela H, et al. Isolation and immunomodulatory effect of flavonol glycosides from Epimedium hunanense. Planta Med, 1997, 63(4):316–319

    PubMed  Article  CAS  Google Scholar 

  7. 7

    Du Q, Xia M, Ito Y. Purification of icariin from the extract of Epimedium segittatum using high-speed counter-current chromatography. J Chromatogr A, 2002, 962(1–2):239–241

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Liu WJ, Xin ZC, Xin H, et al. Effects of icariin on erectile function and expression of nitric oxide synthase isoforms in castrated rats. Asian J Androl, 2005, 7(4): 381–388

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Makarova MN, Pozharitskaya ON, Shikov AN, et al. Effect of lipid-based suspension of Epimedium koreanum Nakai extract on sexual behavior in rats. J Ethnopharmacol, 2007, 114(3):412–416

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Tian L, Xin ZC, Liu WJ, et al. Effects of icariin on the erectile function and expression of nitrogen oxide synthase isoforms in corpus cavernosum of arterigenic erectile dysfunction rat model. Zhonghua Yixue Zazhi (Chinese), 2004, 84(11): 954–957

    CAS  Google Scholar 

  11. 11

    Zhang ZB, Yang QT. The testosterone mimetic properties of icariin. Asian J Androl, 2006, 8(5):601–605

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Xin ZC, Kim EK, Lin CS, et al. Effects of icariin on cGMP-specific PDE5 and cAMP-specific PDE4 activities. Asian J Androl, 2003, 5(1):15–18

    PubMed  CAS  Google Scholar 

  13. 13

    Lee MK, Choi YJ, Sung SH, et al. Antihepatotoxic activity of icariin, a major constituent of Epimedium koreanum, Planta Med, 1995, 61(6):523–526

    PubMed  Article  CAS  Google Scholar 

  14. 14

    He W, Sun H, Yang B, et al. Immunoregulatory effects of the herba Epimediia glycoside icariin. Arzneimittelforschung, 1995, 45(8):910–913

    PubMed  CAS  Google Scholar 

  15. 15

    Niu R. Action of the drug Herba Epimedii on testosterone of the mouse plasma and its accessory sexual organ before and after processing. Zhongguo Zhongyao Zazhi (Chinese), 1989, 14(9):530–532, 574

    CAS  Google Scholar 

  16. 16

    Xiong YB. The study on the relation between icariin and gonad. J Tradit Chin Med (Chinese), 1995, 26(S3):98–99

    Google Scholar 

  17. 17

    Xiong YB, Zhou CH. The effect of extracts from Herba Epimedii and Semen Cuscutae on the function of male reproduction. China J Chinese Materia Medica (Chinese), 1994, 29(2): 89–91

    CAS  Google Scholar 

  18. 18

    Qin DN, She BR, She YC, et al. Effects of flavonoids from semen cuscutae on the reproductive system in male rats. Asian J Androl, 2000, 2(2):99–102

    PubMed  CAS  Google Scholar 

  19. 19

    Xie F, Wu CF, Lai WP, et al. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro. Evid Based Complement Alternat Med, 2005, 2(3):353–361

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Yin XX, Chen ZQ, Dang GT, et al. Effects of Epimedium pubescens icariin on proliferation and differentiation of human osteoblasts. Zhongguo Zhongyao Zazhi (Chinese). 2005, 30(4): 289–291

    CAS  Google Scholar 

  21. 21

    Frost RL, Xi Y, Scholz R, et al. The molecular structure of the phosphate mineral chalcosiderite-avibrational spectroscopic study. Spectrochim Acta A Mol Biomol Spectrosc, 2013, 111:24–30

    PubMed  Article  CAS  Google Scholar 

  22. 22

    Kotchey GP, Gaugler JA, Kapralov AA, et al. Effect of antioxidants on enzyme-catalysed biodegradation of carbon nanotubes, J Mater Chem B Mater Biol Med, 2013, 1(3):302–309

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. 23

    Richard-Lacroix M, Pellerin C. Novel method for quantifying molecular orientation by polarized Raman spectroscopy: a comparative simulations study. Appl Spectrosc, 2013, 67(4):409–419

    PubMed  Article  CAS  Google Scholar 

  24. 24

    Zhuang Z, Li N, Gou Z, et al. Study of molecule variations in renal tumor based on confocal micro-Ranman spectroscopy. J Biomed Optics, 2013, 18(3):31103

    Article  Google Scholar 

  25. 25

    Pudlas M, Koch S, Bolwien C, et al. Raman spectroscopy as a tool for quality and sterility analysis for tissue engineering applications like cartilage transplants. Int J Artif Organs, 2010, 33(4):228–237

    PubMed  CAS  Google Scholar 

  26. 26

    Won-in K, Thongkam Y, Pongkrapan S, et al. Raman spectroscopic study on archaeological glasses in Thailand: ancient Thai glass. Spectrochim Acta A Mol Biomol Spectrosc, 2011, 83(1):231–235

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Smith ZJ, Huser TR, Wachsmann-Hogiu S. Raman scattering in pathology. Stud Health Technol Inform, 2013, 185:207–234

    PubMed  Google Scholar 

  28. 28

    Kubasek WL, Wang Y, Thomas GA, et al. Peticolas, Raman spectra of the model B-DNA oligomer d(CGCGAATTCGCG)2 and of the DNA in living salmon sperm show that both have very similar B-type conformations. Biochemistry, 1986, 25(23):7440–7445

    PubMed  Article  CAS  Google Scholar 

  29. 29

    Huser T, Orme CA, Hollars CW, et al. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells, J Biophotonics, 2009, 2(5):322–332

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Meister K, Schmidt DA, Bründermann E, et al. Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. Analyst, 2010, 135(6):1370–1374

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Sánchez V, Redmann K, Wistuba J, et al. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy, Fertil Steril, 2012, 98(5):1124–1129.e 1-3

    PubMed  Article  Google Scholar 

  32. 32

    Huang Z, Chen G, Chen X, et al. Rapid and label-free identification of normal spermatozoa based on image analysis and micro-Raman spectroscopy. J Biophotonics, 2013, doi:10.1002/jbio.201300003

    Google Scholar 

  33. 33

    Sigman M. Refining the measurement of sperm DNA fragmentation. Fertil Steril, 2012, 98(5):1123

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Liu F, Zhu Y, Liu Y, et al. Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucid. Fertil Steril, 2013, 99(3):684–689.e4

    PubMed  Article  Google Scholar 

  35. 35

    Thomas GJr., Kyogoku Y. Biological infrared and Raman spectroscopy part C. Bram EGJr, Grasselli JG. editors. Marcel Dekker. USA. 1977, 717–872

    Google Scholar 

  36. 36

    Goodwin DC, Brahms J. Form of DNA and the nature of interactions with proteins in chromatin. Nucleic Acids Res, 1978, 5(3):835–850

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  37. 37

    Xu Y, Zhang Z, Zhang H. Raman spectroscopic study of DNA after photosensitive damage caused by hypocrellins A and B. Sci China C Life Sci, 1998, 41(4):360–366

    PubMed  Article  CAS  Google Scholar 

  38. 38

    Zhao HX, Xu YM, Zhang ZY. Ranman spectroscopic study of DNA photodamage sensitized by hypocrellin B and 5-brominated-hypocrellin B. Chinese Science Bulletin, 1998, 43(2):1128–1134

    Article  CAS  Google Scholar 

  39. 39

    Xu Y, Zhou Z, Yang H, et al. Raman spectroscopic study of microcosmic photodamage of the space structure of DNA sensitized by Yangzhou haematoporphyrin derivative and photofrin II. J Photochem Photobio B, 1999, 52(1–3):30–34

    CAS  Google Scholar 

  40. 40

    Kolodziejski N. Tip-enhanced Raman spectroscopy for the base interrogation of DNA. Methods Cell Biol, 2013, 114:611–628

    PubMed  Article  Google Scholar 

  41. 41

    Wang L, He D, Zeng J, et al. Raman spectroscopy, a potential tool in diagnosis and prognosis of castration-resistant prostate cancer. J Biomed Opt, 2013, 18(8): 87001

    PubMed  Article  Google Scholar 

  42. 42

    Schulze HG, Konorov SO, Piret JM, et al. Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy. Analyst, 2013, 138(12):3416–3423

    PubMed  Article  CAS  Google Scholar 

  43. 43

    Erfurth SC, Peticolas WL. Melting and premelting phenomenon in DNA by laser Raman scattering. Biopolymer, 1975, 14(2):247–264

    Article  CAS  Google Scholar 

  44. 44

    Bansal J, Singh I, Bhatnagar PK, et al. DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. J Biosci Bioeng, 2013, 115(4):438–441

    PubMed  Article  CAS  Google Scholar 

  45. 45

    Ghaleno LR, Valojerdi MR, Janzamin E, et al. Evaluation of conventional semen parameters, intracellular reactive oxygen species, DNA fragmentation and dysfunction of mitochondrial membrane potential after semen preparation techniques: a flow cytometric study. Arch Gynecol Obstet, 2014, 289(1):173–180

    PubMed  Article  CAS  Google Scholar 

  46. 46

    Smith TB, De Iuliis GN, Lord T, et al. The senescence-accelerated mouse prone 8 as a model for oxidative stress and impaired DNA repair in the male germ line. Reproduction, 2013, 146(3):253–262

    PubMed  Article  CAS  Google Scholar 

  47. 47

    Bogliolo L, Murrone O, Di Emidio G, et al. Raman spectroscopy-based approach to detect aging-related oxidative damage in the mouse oocyte. J Assist Reprod Genet, 2013, 30(7):877–882

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Di-ling Chen 陈地灵 or Ya-lin Xu 徐亚林 or Jun Chen 陈 俊.

Additional information

This project was supported partially by grants from the National Natural Sciences Foundation of China (Nos. 81370705 and 81070487), China Postdoctoral Science Foundation (No. 2013M542191), and the Natural Science Foundation of Guangdong Province, China (Nos. S2012010009140 and S2013040016159).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Xiao, H., Qi, T. et al. Antioxidative protective effect of icariin on the FeSO4/H2O2-damaged human sperm based on confocal raman micro-spectroscopy. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 755–760 (2014). https://doi.org/10.1007/s11596-014-1348-3

Download citation

Key words

  • anti-oxidative protection
  • mechanism
  • icariin
  • human sperm
  • Raman spectroscopy