Skip to main content
Log in

Effect of Methyl-CpG binding domain protein 2 (MBD2) on AMD-like lesions in ApoE-deficient mice

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The role of methyl-CpG binding domain protein 2 (MBD2) in an ApoE-deficient mouse model of age-related macular degeneration (AMD) was investigated. Eight-week-old Mbd2/ApoE double deficient (Mbd2-/- ApoE-/-) mice (n=12, 24 eyes, experimental group) and MBD2 (wt) ApoE-/- mice (n=12, 24 eyes, control group) were fed on Western-type diet for 4 months. The mice were sacrificed, and total serum cholesterol levels were analyzed and Bruch’s membrane (BM) of the eyes was removed for ultrastructural observation by transmission electron microscopy. Moreover, intercellular adhesion molecule 1 (ICAM-1) immunoreactivities were evaluated by fluorescence microscopy in sections of the eyes in both groups for further understanding the function mechanism of MBD2. There was no significant difference in the total serum cholesterol levels between control group and experimental group (P>0.05). Transmission electron microscopy revealed that AMD-like lesions, various vacuoles accumulated on BM, notable outer collagenous layer deposits and dilated basal infoldings of retinal pigment epithelium (RPE) were seen in both groups, and the BM in control group was significantly thickened as compared with experimental group (P<0.05). Fluorescence micrographs exhibited the expression of ICAM-1 in choroid was higher in control group than in experimental group. We are led to conclude that MBD2 gene knockout may lead to accumulation of more deposits on the BM and influence the pathogenesis of AMD via triggering endothelial activation and inflammatory response in choroid, improving microcirculation, and reducing lipid deposition so as to inhibit the development of AMD-like lesions. Our study helps to provide a new therapeutic approach for the clinical treatment of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet, 2012, 379(9827):728–1738

    Article  Google Scholar 

  2. Zarbin MA. In: Bandello F, Querques G, eds. Medical Retina. Basel: Karger, 2012:125–133

  3. Gorin MB. Genetic insights into age-related macular degeneration: controversies addressing risk, causality, and therapeutics. Mol Aspects Med, 2012, 33(4):467–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wang Y, Wang VM, Chan CC. The role of anti-inflammatory agents in age-related macular degeneration (AMD) treatment. Eye (Lond) 2011, 25(2): 127–139

    Article  PubMed Central  Google Scholar 

  5. Miao H, Tao Y, Li XX, et al. Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis, 2012, 18, 574–580

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Skeie JM, Hernandez J, Hinek A, et al. Molecular responses of choroidal endothelial cells to elastin derived peptides through the elastin-binding protein (GLB1). Matrix Biol, 2012, 31(2):113–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Switzer DW Jr, Mendonca LS, Saito M, et al. Segregation of ophthalmoscopic characteristics according to choroidal thickness in patients with early age-related macular degeneration. Retina, 2012, 32(7):265–271

    Google Scholar 

  8. Dimitrova G, Kato S. Color Doppler imaging of retinal diseases. Surv Ophthalmol, 2010, 55(3):193–214

    Article  PubMed  Google Scholar 

  9. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  10. Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes, 2011, 60(5):1528–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Udali S, Guarini P, Moruzzi S, et al. Cardiovascular epigenetics: From DNA methylation to microRNAs. Mol Aspects Med, 2013, 34(4):883–901

    Article  CAS  PubMed  Google Scholar 

  12. Cvekl A, Mitton KP. Epigenetic regulatory mechanisms in vertebrate eye development and disease. Heredity (Edinb), 2010, 105(1):135–151

    Article  CAS  Google Scholar 

  13. Zhou P, Luo Y, Liu X, et al. Down-regulation and CpG island hypermethylation of CRYAA in age-related nuclear cataract. FASEB J, 2012, 26(12):4897–4902

    Article  CAS  PubMed  Google Scholar 

  14. Wiggs JL. The cell and molecular biology of complex forms of glaucoma: updates on genetic, environmental, and epigenetic risk factors. Invest Ophthalmol Vis Sci, 2012, 53(5):2467–2469

    Article  CAS  PubMed  Google Scholar 

  15. Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes, 2011, 60(4):1304–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yin X, Latif R, Bahn RS, et al. Genetic profiling in graves’ disease: further evidence for lack of a distinct genetic contribution to Graves’ ophthalmopathy. Thyroid, 2012, 22(7):730–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Temming P, Corson TW, Lohmann DR, et al. Retinoblastoma tumorigenesis: genetic and epigenetic changes walk hand in hand. Future Oncol, 2012, 8(5): 525–528

    Article  CAS  PubMed  Google Scholar 

  18. Suuronen T, Nuutinen T, Ryhanen T, et al. Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun, 2007, 357(2):397–401

    Article  CAS  PubMed  Google Scholar 

  19. Hunter A, Spechler PA, Cwanger A, et al. DNA methylation is associated with altered gene expression in AMD. Invest Ophthalmol Vis Sci, 2012, 53(4):2089–2105

    Article  PubMed  Google Scholar 

  20. Rao X, Zhong J, Zhang S, et al. Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury. Circulation, 2011, 123(25): 2964–2974

    Article  CAS  PubMed  Google Scholar 

  21. Mares-Perlman JA, Brady WE, Klein R, et al. Dietary fat and age-related maculopathy. Arch Ophthalmol, 1995, 113(6): 743–748

    Article  CAS  PubMed  Google Scholar 

  22. Sin HP, Liu DT, Lam DS, et al. Lifestyle modification, nutritional and vitamins supplements for age-related macular degeneration. Acta Ophthalmol, 2013, 91(1):6–11

    Article  CAS  PubMed  Google Scholar 

  23. Weikel KA, Chiu CJ, Taylor A, et al. Nutritional modulation of age-related macular degeneration. Mol Aspects Med, 2012, 33(4):318–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wong IY, Koo SC, Chan CW, et al. Prevention of age-related macular degeneration. Int Ophthalmol, 2011, 31(1):73–82

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nakashima Y, Plump AS, Raines EW, et al. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb Vasc Biol, 1994, 14(1):133–140

    Article  CAS  Google Scholar 

  26. Malek G, Johnson LV, Mace BE, et al. Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci U S A, 2005, 102(33):1900–11905

    Article  Google Scholar 

  27. Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med, 2012, 33(4):295–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kozlowski MR. RPE cell senescence: a key contributor to age-related macular degeneration. Med Hypotheses, 2012, 78(4):505–510

    Article  PubMed  Google Scholar 

  29. Mettu PS, Wielgus AR, Ong SS, et al. Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration. Mol Aspects Med, 2012, 33(4):376–398

    Article  CAS  PubMed  Google Scholar 

  30. Hussain AA, Lee Y, Zhang JJ, et al. Disturbed matrix metalloproteinase activity of Bruch’s membrane in age-related macular degeneration. Invest Ophthalmol Vis Sci, 2011, 52(7):4459–4466

    Article  CAS  PubMed  Google Scholar 

  31. Ong JM, Zorapapel NC, Rich KA, et al. Effects of cholesterol and apolipoprotein E on retinal abnormalities in ApoE-deficient mice. Invest Ophthalmol Vis Sci, 2001, 42(8):1891–1900

    CAS  PubMed  Google Scholar 

  32. Pennesi ME, Neuringer M, Courtney RJ, et al. Animal models of age related macular degeneration. Mol Aspects Med, 2012, 33(4):487–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Dithmar S, Curcio CA, Le NA, et al. Ultrastructural changes in Bruch’s membrane of apolipoprotein E-deficient mice. Invest Ophthalmol Vis Sci, 2000, 41(8): 2035–2042

    CAS  PubMed  Google Scholar 

  34. Ida H, Ishibashi K, Reiser K, et al. Ultrastructural aging of the RPE-Bruch’s membrane-choriocalpilaris complex in the D-galactose-treated mouse. Invest Ophthalmol Vis Sci, 2004, 45(7):2348–2354

    Article  PubMed  Google Scholar 

  35. Mullins RF, Johnson MN, Faidley EA, et al. Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. Invest Ophthalmol Vis Sci, 2011, 52(3): 1606–1612

    Article  PubMed Central  PubMed  Google Scholar 

  36. Machalinska A, Safranow K, Dziedziejko V, et al. Different populations of circulating endothelial cells in patients with age-related macular degeneration: a novel insight into pathogenesis. Invest Ophthalmol Vis Sci, 2011, 52(1):93–100

    Article  CAS  PubMed  Google Scholar 

  37. Machalinska A, Safranow K, Sylwestrzak Z, et al. Elevated level of circulating endothelial cells as an exponent of chronic vascular dysfunction in the course of AMD. Klin Oczna, 2011, 113(7–9):228–232

    PubMed  Google Scholar 

  38. Gustavsson C, Agardh CD, Zetterqvist AV, et al. Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS One, 2010, 5(9):e12699

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mullins RF, Skeie JM, Malone EA, et al. Macular and peripheral distribution of ICAM-1 in the human choriocapillaris and retina. Mol Vis, 2006, 30(12):224–235

    Google Scholar 

  40. Boltz A, Luksch A, Wimpissinger B, et al. Choroidal blood flow and progression of age-related macular degeneration in the fellow eye in patients with unilateral choroidal neovascularization. Invest Ophthalmol Vis Sci, 2010, 51(8):4220–4425

    Article  PubMed  Google Scholar 

  41. Berenberg TL, Metelitsina TI, Madow B, et al. The association between drusen extent and foveolar choroidal blood flow in age-related macular degeneration. Retina, 2012, 32(1):25

    Article  PubMed Central  PubMed  Google Scholar 

  42. Ng HH, Zhang Y, Hendrich B, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet, 1999, 23(1):58–61

    Article  CAS  PubMed  Google Scholar 

  43. Fatemi M, Wade PA. MBD family proteins: reading the epigenetic code. J Cell Sci, 2006, 119(Pt 15): 3033–3037

    Article  CAS  PubMed  Google Scholar 

  44. Kanda A, Abecasis G, Swaroop A, et al. Inflammation in the pathogenesis of age-related macular degeneration. Br J Ophthalmol, 2008, 92(4):448–450

    Article  PubMed  Google Scholar 

  45. Xu H, Chen M, Forrester JV, et al. Para-inflammation in the aging retina. Prog Retin Eye Res, 2009, 28(5): 348–368

    Article  PubMed  Google Scholar 

  46. Frank PG, Lisanti MP. ICAM-1: role in inflammation and in the regulation of vascular permeability. Am J Physiol Heart Circ Physiol, 2008, 295(3):H926–H927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep, 2009, 61(1):22–32

    Article  CAS  PubMed  Google Scholar 

  48. Penfold PL, Wen L, Madigan MC, et al. Modulation of permeability and adhesion molecule expression by human choroidal endothelial cells. Invest Ophthalmol Vis Sci, 2002, 43(9):3125–3130

    PubMed  Google Scholar 

  49. Hafezi-Moghadam A. In: Joyce Tombran-Tink, Colin J. Barnstable, Thomas W, eds. Visual Dysfunction in Diabetes. New York: Springer, 2012:105–122

  50. Skeie JM, Fingert JH, Russell SR, et al. Complement component C5a activates ICAM-1 expression on human choroidal endothelial cells. Invest Ophthalmol Vis Sci, 2010, 51(10):5336–5342

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu  (胡 军).

Additional information

This study was supported by grants from Natural Science Foundation of Hubei Province (No: 2012FFB02304) and Scientific Research Foundation of Ministry of Education (No: 2013-1792), China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Jr., Wang, C., Yu, Ql. et al. Effect of Methyl-CpG binding domain protein 2 (MBD2) on AMD-like lesions in ApoE-deficient mice. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 408–414 (2014). https://doi.org/10.1007/s11596-014-1292-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1292-2

Key words

Navigation