Skip to main content
Log in

Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats

Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Recent studies have shown that Er-Zhi-Wan (EZW), a traditional Chinese medicine consisting of Herba Ecliptae (HE) and Fructus Ligustri Lucidi (FLL), had a definite antiosteoporotic effect on osteoporotic femur, but its effect on osteoporosis of alveolar bone remains unknown. In the present study, we investigated the effects of Er-Zhi-Wan (EZW) on the microarchitecture and the regulation of Wnt/β-catenin signaling pathway in the alveolar bone of ovariectomized rats. Thirty Sprague-Dawley rats were randomly divided into three groups: sham operation group (sham, n=10), ovariectomy (OVX) group (n=10), and OVX with EZW treatment group (EZW group, n=10). From one week after ovariectomy, EZW (100 mg/mL) or vehicle (distilled water) was fed (1 mL/100 g) once per day for 12 weeks until the sacrifice of the rats. The body weights were measured weekly. After sacrifice, the sera and mandible were collected and routinely prepared for the measurement of alveolar trabecular microarchitecture, serum levels of E2, bone-specific alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase 5b (TRAP5b), as well as mandibular mRNA expression of Wnt/β-catenin signaling pathway molecules wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5), β-catenin and dickkopf homolog 1 (DKK1). The results showed that EZW treatment significantly prevented the body weight gain, degradation of alveolar trabecular microarchitecture and alveolar bone loss in the OVX rats. Furthermore, we observed that EZW could increase the serum levels of E2 and BALP, and decrease levels of serum TRAP5b in EZW group compared with vehicle group. In addition, RT-PCR results revealed that EZW upregulated the expression levels of wnt3a, LRP5 and β-catenin, and reduced the expression of DKK1 in OVX rats. Taken together, our results suggested that EZW may have potential anti-osteoporotic effects on osteoporotic alveolar bone by stimulating Wnt/LRP5/β-catenin signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Birkenfeld L, Yemini M, Kase NG, et al. Menopause- related oral alveolar bone resorption: a review of relatively unexplored consequences of estrogen deficiency. Menopause, 1999,6(2):129–133

    Article  CAS  PubMed  Google Scholar 

  2. Hildebolt CF. Osteoporosis and oral bone loss. Dentomaxillofac Radiol, 1997,26(1):3–15

    Article  CAS  PubMed  Google Scholar 

  3. Payne JB, Reinhardt RA, Nummikoski PV, et al. Longitudinal alveolar bone loss in postmenopausal osteoporotic/osteopenic women. Osteoporos Int, 1999,10(1): 34–40

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka M, Ejiri S, Toyooka E, et al. Effects of ovariectomy on trabecular structures of rat alveolar bone. J Periodontal Res, 2002,37(2):161–165

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka M, Toyooka E, Kohno S, et al. Long-term changes in trabecular structure of aged rat alveolar bone after ovariectomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2003,95(4):495–502

    Article  PubMed  Google Scholar 

  6. Stevenson JC. Justification for the use of HRT in the long-term prevention of osteoporosis. Maturitas, 2005,51(2):113–126

    Article  CAS  PubMed  Google Scholar 

  7. Prelevic GM, Kocjan T, Markou A. Hormone replacement therapy in postmenopausal women. Minerva Endocrinol, 2005,30(1):27–36

    CAS  PubMed  Google Scholar 

  8. Cheng M, Wang Q, Fan Y, et al. A traditional Chinese herbal preparation, Er-Zhi-Wan, prevent ovariectomy-induced osteoporosis in rats. J Ethnopharmacol, 2011,138(2):279–285

    Article  PubMed  Google Scholar 

  9. Zhang H, Xing WW, Li YS, et al. Effects of a traditional Chinese herbal preparation on osteoblasts and osteoclasts. Maturitas, 2008,61(4):334–339

    Article  PubMed  Google Scholar 

  10. Xu H, Su ZR, Huang W, et al. Er Zhi Wan, an ancient herbal decoction for woman menopausal syndrome, activates the estrogenic response in cultured MCF-7 cells: an evaluation of compatibility in defining the optimized preparation method. J Ethnopharmacol, 2012,143(1): 109–115

    Article  PubMed  Google Scholar 

  11. Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets, 2009,13(4):485–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kulkarni NH, Onyia JE, Zeng Q, et al. Orally bioavailable GSK-3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J Bone Miner Res, 2006,21(6):910–920

    Article  CAS  PubMed  Google Scholar 

  13. Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner, 1991,15(3):175–191

    Article  CAS  PubMed  Google Scholar 

  14. Gilles JA, Carnes DL, Dallas MR, et al. Oral bone loss is increased in ovariectomized rats. J Endod, 1997,23(7): 419–422

    Article  CAS  PubMed  Google Scholar 

  15. Sugimoto M, Futaki N, Harada M, et al. Effects of combined treatment with eldecalcitol and alendronate on bone mass, mechanical properties, and bone histomorphometry in ovariectomized rats: a comparison with alfacalcidol and alendronate. Bone, 2013,52(1):181–188

    Article  CAS  PubMed  Google Scholar 

  16. Cavani F, Ferretti M, Carnevale G, et al. Effects of different doses of ferutinin on bone formation/resorption in ovariectomized rats. J Bone Miner Metab, 2012,30(6): 619–629

    Article  CAS  PubMed  Google Scholar 

  17. Peng S, Liu XS, Wang T, et al. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res, 2010,28(9):1208–1214

    Article  CAS  PubMed  Google Scholar 

  18. Eren E, Yilmaz N. Biochemical markers of bone turnover and bone mineral density in patients with beta-thalassaemia major. Int J Clin Pract, 2005,59(1):46–51

    Article  CAS  PubMed  Google Scholar 

  19. Dervis E. Oral implications of osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005,100(3): 349–356

    Article  PubMed  Google Scholar 

  20. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med, 2006,354(21):2250–2261

    Article  CAS  PubMed  Google Scholar 

  21. McDonnell P, McHugh PE, O’Mahoney D. Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng, 2007,35(2):170–189

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Li X, Song G, et al. Effects of strontium ranelate on osseointegration of titanium implant in osteoporotic rats. Clin Oral Implants Res, 2012,23(9):1038–1044

    Article  PubMed  Google Scholar 

  23. Huja SS, Fernandez SA, Hill KJ, et al. Indentation modulus of the alveolar process in dogs. J Dent Res, 2007,86(3):237–241

    Article  CAS  PubMed  Google Scholar 

  24. Ames MS, Hong S, Lee HR, et al. Estrogen deficiency increases variability of tissue mineral density of alveolar bone surrounding teeth. Arch Oral Biol, 2010,55(8): 599–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yang J, Pham SM, Crabbe DL. Effects of oestrogen deficiency on rat mandibular and tibial microarchitecture. Dentomaxillofac Radiol, 2003,32(4):247–251

    Article  CAS  PubMed  Google Scholar 

  26. Marie PJ, Kassem M. Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur J Endocrinol, 2011,165(1):1–10

    Article  CAS  PubMed  Google Scholar 

  27. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest, 2006,116(5): 1202–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Bodine PV, Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord, 2006,7(1–2):33–39

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Shi  (施 斌).

Additional information

The authors contributed equally to this work.

This project was supported by grants from the National Natural Science Foundation of China (No. 81170992) and the Fundamental Research Funds for the Central Universities of Wuhan University (No. 201130402020004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Wang, Yq., Yan, Q. et al. Effects of Er-Zhi-Wan on microarchitecture and regulation of Wnt/β-catenin signaling pathway in alveolar bone of ovariectomized rats. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 114–119 (2014). https://doi.org/10.1007/s11596-014-1241-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1241-0

Key words

Navigation