Skip to main content
Log in

KN-93, A CaMKII inhibitor, suppresses ventricular arrhythmia induced by LQT2 without decreasing TDR

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Abnormal enhanced transmural dispersion of repolarization (TDR) plays an important role in the maintaining of the severe ventricular arrhythmias such as torsades de pointes (TDP) which can be induced in long-QT (LQT) syndrome. Taking advantage of an in vitro rabbit model of LQT2, we detected the effects of KN-93, a CaM-dependent kinase (CaMK) II inhibitor on repolarization heterogeneity of ventricular myocardium. Using the monophasic action potential recording technique, the action potentials of epicardium and endocardium were recorded in rabbit cardiac wedge infused with hypokalemic, hypomagnesaemic Tyrode’s solution. At a basic length (BCL) of 2000 ms, LQT2 model was successfully mimicked with the perfusion of 0.5 μmol/L E-4031, QT intervals and the interval from the peak of T wave to the end of T wave (Tp-e) were prolonged, and Tp-e/QT increased. Besides, TDR was increased and the occurrence rate of arrhythmias like EAD, R-on-T extrasystole, and TDP increased under the above condition. Pretreatment with KN-93 (0.5 μmol/L) could inhibit EAD, R-on-T extrasystole, and TDP induced by E-4031 without affecting QT interval, Tp-e, and Tp-e/QT. This study demonstrated KN-93, a CaMKII inhibitor, can inhibit EADs which are the triggers of TDP, resulting in the suppression of TDP induced by LQT2 without affecting TDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fenichel RR, Malik M, Antzelevitch C, et al. Druginduced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol, 2004,15(4): 475–495

    Article  PubMed  Google Scholar 

  2. Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 1995,80(5):795–803

    Article  PubMed  CAS  Google Scholar 

  3. Yan GX, Wu Y, Liu TX, et al. Phase 2 early afterdepolarization as a trigger of polymorphic ventricular tachycardia in acquired long-QT syndrome: direct evidence from intracellular recordings in the intact left ventricular wall. Circulation, 2001,103(23):2851–2856

    Article  PubMed  CAS  Google Scholar 

  4. Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol London, 2002,543(2):615–631

    Article  PubMed  CAS  Google Scholar 

  5. Viswanathan PC, Rudy Y. Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res, 1999,42(2):530–542

    Article  PubMed  CAS  Google Scholar 

  6. Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest, 1986,78(5): 1185–1192

    Article  PubMed  CAS  Google Scholar 

  7. Anderson ME, Braun AP, Wu Y, et al. KN-93, an inhibitor of multifunctional Ca2+/calmodulin-dependent protein kinase, decreases early afterdepolarizations in rabbit heart. J Pharmacol Exp Ther, 1998,287(3): 996–1006

    PubMed  CAS  Google Scholar 

  8. Lu HR, Vlaminckx E, Van de Water A, et al. Calmodulin antagonist W-7 prevents sparfloxacin-induced early afterdepolarizations (EADs) in isolated rabbit purkinje fibers: importance of beat-to-beat instability of the repolarization. J Cardiovasc Electrophysiol, 2006,17(4): 415–422

    Article  PubMed  Google Scholar 

  9. Quan XQ, Bai R, Liu N, et al. Increasing gap junction coupling reduces transmural dispersion of repolarization and prevents torsade de pointes in rabbit LQT3 model. J Cardiovasc Electrophysiol, 2007,18(11):1184–1189

    Article  PubMed  Google Scholar 

  10. Quan XQ, Bai R, Lu JG, et al. Pharmacological enhancement of cardiac gap junction coupling prevents arrhythmias in canine LQT2 model. Cell Commun Adhes, 2009,16(1–3):29–38

    Article  PubMed  CAS  Google Scholar 

  11. Liu T, Brown BS, Wu Y, et al. Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm, 2006,3(8):948–956

    Article  PubMed  Google Scholar 

  12. Viitasalo M, Oikarinen L, Swan H, et al. Ambulatory electrocardiographic evidence of transmural dispersion of repolarization in patients with long-QT syndrome type 1 and 2. Circulation, 2002,106(19):2473–2478

    Article  PubMed  Google Scholar 

  13. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation, 1998,98(18):1928–1936

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi M, Shimizu M, Ino H, et al. T wave peak-to-end interval and QT dispersion in acquired long QT syndrome: a new index for arrhythmogenicity. Clin Sci (Lond), 2003,105(6):671–676

    Article  Google Scholar 

  15. Takenaka K, Ai T, Shimizu W, et al. Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation, 2003,107(6):838–844

    Article  PubMed  Google Scholar 

  16. Wu Y, Temple J, Zhang R, et al. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation, 2002,106(10):1288–1293

    Article  PubMed  CAS  Google Scholar 

  17. Ke J, Zhang CT, Ma YX, et al. The effects of calmodulin kinase II inhibitor on ventricular arrhythmias in rabbits with cardiac hypertrophy. Zhonghua Xin Xue Guan Bing Za Zhi (Chinese), 2007,35(1):33–36

    CAS  Google Scholar 

  18. Hlaing T, DiMino T, Kowey PR, et al. ECG repolarization waves: their genesis and clinical implications. Ann Noninvasive Electrocardiol, 2005,10(2):211–223

    Article  PubMed  Google Scholar 

  19. Wu Y, MacMillan LB, McNeill RB, et al. CaM kinase augments cardiac L-type Ca2+ current: a cellular mechanism for long Q-T arrhythmias. Am J Physiol, 1999,276(6):H2168–H2178

    PubMed  CAS  Google Scholar 

  20. Dzhura I, Wu Y, Colbran RJ, et al. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol, 2000,2(3):173–177

    Article  PubMed  CAS  Google Scholar 

  21. Wu Y, Roden DM, Anderson ME. Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res, 1999,84(8):906–912

    Article  PubMed  CAS  Google Scholar 

  22. Meyer T, Hanson PI, Stryer L, et al. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science, 1992,256(5060):1199–1202

    Article  PubMed  CAS  Google Scholar 

  23. De Ferrari GM, Viola MC, D’Amato E, et al. Distinct patterns of calcium transients during early and delayed afterdepolarizations induced by isoproterenol in ventricular myocytes. Circulation, 1995,91(10):2510–2515

    Article  PubMed  CAS  Google Scholar 

  24. Xiao RP, Cheng H, Lederer WJ, et al. Dual regulation of Ca2+/calmodulin-dependent kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sci USA, 1994,91(20):9659–9663

    Article  PubMed  CAS  Google Scholar 

  25. Yuan W, Bers DM. Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin-dependent protein kinase. Am J Physiol, 1994,267(3):H982–H993

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-gao Lv  (吕家高).

Additional information

The authors contributed equally to this work.

This project was supported by Natural Science Foundation of Hubei Province, China (No. 2008CDB163).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Wl., Zhang, Ss., Deng, J. et al. KN-93, A CaMKII inhibitor, suppresses ventricular arrhythmia induced by LQT2 without decreasing TDR. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 636–639 (2013). https://doi.org/10.1007/s11596-013-1172-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1172-1

Key words

Navigation