Skip to main content
Log in

Role of GSK-3β in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study investigated the role of glycogen synthase kinase-3β (GSK-3β) in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats. The hippocampi were dissected from aged rats which had been intraperitoneally administered lithium chloride (LiCl, 100 mg/kg) and then exposed to 1.4% isoflurane for 6 h. The expression of GSK-3β was detected by Western blotting. The mRNA and protein expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured by real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Morris water maze was employed to detect spatial memory ability of rats. The results revealed that the level of GSK-3β was upregulated after isofurane exposure. Real-time PCR analysis demonstrated that isoflurane anesthesia increased mRNA levels of TNF-α, IL-1β and IL-6, which was consistent with the ELISA results. However, these changes were reversed by prophylactic LiCl, a non-selective inhibitor of GSK-3β. Additionally, we discovered that LiCl alleviated isoflurane-induced cognitive impairment in aged rats. Furthermore, the role of GSK-3β in isoflurae-induced neuroinflammation and cognitive dysfunction was associated with acetylation of NF-κB p65 (Lys310). In conclusion, these results suggested that GSK-3β is associated with isoflurane-induced upregulation of proinflammatory cytokines and cognitive disorder in aged rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman S, Stygall J, Hirani S, et al. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review. Anesthesiology, 2007,106(3):572–590

    Article  PubMed  Google Scholar 

  2. Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology, 2008,108(1):18–30

    Article  PubMed  Google Scholar 

  3. Mason SE, Noel-Storr A, Ritchie CW. The impact of general and regional anesthesia on the incidence of post-operative cognitive dysfunction and post-operative delirium: a systematic review with meta-analysis. J Alzheimers Dis, 2010,22:67–79

    PubMed  Google Scholar 

  4. Zhang Y, Xu Z, Wang H, et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol, 2012,71(5):687–698

    Article  PubMed  CAS  Google Scholar 

  5. Zhang B, Tian M, Zhen Y, et al. The Effects of isoflurane and desflurane on cognitive function in humans. Anesth Analg, 2012,114(2):410–415

    Article  PubMed  CAS  Google Scholar 

  6. Wu X, Lu Y, Dong Y, et al. The inhalation anesthetic isoflurane increases levels of proinflammatory TNF-alpha, IL-6, and IL-1beta. Neurobiol Aging, 2012,33(7):1364–1378

    Article  PubMed  CAS  Google Scholar 

  7. Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis, 2010,37(3):503–509

    Article  PubMed  CAS  Google Scholar 

  8. Acarin L, Gonzalez B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci, 2000,12(10):3505–3520

    Article  PubMed  CAS  Google Scholar 

  9. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol, 2006,147(Suppl 1):S232–S240

    PubMed  CAS  Google Scholar 

  10. Terrando N, Rei FA, Vizcaychipi M, et al. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction. Crit Care, 2010,14(3):R88

    Article  PubMed  Google Scholar 

  11. Wan Y, Xu J, Ma D, et al. Postoperative impairment of cognitive function in rats: a possible role for cytokine-mediated inflammation in the hippocampus. Anesthesiology, 2007,106(3):436–443

    Article  PubMed  Google Scholar 

  12. Kim WY, Wang X, Wu Y, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci, 2009,12(11):1390–1397

    Article  PubMed  CAS  Google Scholar 

  13. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol, 2001,2(10):769–776

    Article  PubMed  CAS  Google Scholar 

  14. Leroy K, Brion JP. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat, 1999,16(4):279–293

    Article  PubMed  CAS  Google Scholar 

  15. Yuskaitis CJ, Jope RS. Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal, 2009,21(2):264–273

    Article  PubMed  CAS  Google Scholar 

  16. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci, 2010,11(8):539–551

    Article  PubMed  CAS  Google Scholar 

  17. Wang MJ, Huang HY, Chen WF, et al. Glycogen synthase kinase-3beta inactivation inhibits tumor necrosis factor-alpha production in microglia by modulating nuclear factor kappaB and MLK3/JNK signaling cascades. J Neuroinflammation, 2010,7:99

    Article  PubMed  CAS  Google Scholar 

  18. Steinmetz J, Christensen KB, Lund T, et al. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology, 2009,110(3):548–555

    Article  PubMed  Google Scholar 

  19. Ramaiah R, Lam AM. Postoperative cognitive dysfunction in the elderly. Anesthesiol Clin, 2009,27(3):485–496

    Article  PubMed  Google Scholar 

  20. Sanders RD, Maze M. Neuroinflammation and postoperative cognitive dysfunction: can anaesthesia be therapeutic? Eur J Anaesthesiol, 2010,27(1):3–5

    Article  PubMed  Google Scholar 

  21. Cao XZ, Ma H, Wang JK, et al. Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(8):1426–1432

    Article  PubMed  CAS  Google Scholar 

  22. Terrando N, Monaco C, Ma D, et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci USA, 2010,107(47):20518–20522

    Article  PubMed  CAS  Google Scholar 

  23. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol, 2010,68(3):360–368

    Article  PubMed  CAS  Google Scholar 

  24. Barrientos RM, Sprunger DB, Campeau S, et al. BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL-1beta administration. J Neuroimmunol, 2004,155(1–2):119–126

    Article  PubMed  CAS  Google Scholar 

  25. Zhao YL, Xiang Q, Shi QY, et al. GABAergic excitotoxicity injury of the immature hippocampal pyramidal neu rons’ exposure to isoflurane. Anesth Analg, 2011,113(5):1152–1160

    Article  PubMed  CAS  Google Scholar 

  26. Zhao Y, Jin X, Wang J, et al. Isoflurane enhances the expression of cytochrome C by facilitation of NMDA receptor in developing rat hippocampal neurons in vitro. J Huazhong Univ Sci Technol [Med Sci], 2011,31(6):779–783

    Article  CAS  Google Scholar 

  27. Li SY, Xia LX, Zhao YL, et al. Minocycline mitigates isoflurane-induced cognitive impairment in aged rats. Brain Res, 2013,1496:84–93

    Article  PubMed  CAS  Google Scholar 

  28. Zhu LQ, Wang SH, Liu D, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci, 2007,27(45):12211–12220

    Article  PubMed  CAS  Google Scholar 

  29. Zhu LQ, Liu D, Hu J, et al. GSK-3 beta inhibits presynaptic vesicle exocytosis by phosphorylating P/Q-type calcium channel and interrupting SNARE complex formation. J Neurosci, 2010,30(10):3624–3633

    Article  PubMed  CAS  Google Scholar 

  30. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol, 2006, 79(4):173–189

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-lin Luo  (罗爱林).

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81271233, No. 81200880, No. 31240030).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sy., Chen, X., Chen, Yl. et al. Role of GSK-3β in isoflurane-induced neuroinflammation and cognitive dysfunction in aged rats. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 530–535 (2013). https://doi.org/10.1007/s11596-013-1154-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1154-3

Key words

Navigation