Skip to main content
Log in

Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/NF-kB signaling pathways

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Excessive activation of macrophages is implicated in various inflammatory injuries. Salidroside (Sal), one of the main bioactive components of Rhodiola Sachalinensis, has been reported to possess anti-inflammatory activities. This study aimed to examine the effect of Sal on the activation of macrophages and the possible mechanism. The lipopolysaccharide (LPS)-stimulated phrobol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophage models were established. The changes in the inflammatory profiles of THP-1-derived macrophages were determined. The results showed that Sal significantly decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) at both mRNA and protein levels in THP-1-derived macrophages, and the effect was dose-depedent. Moreover, NF-κB activation was significantly suppressed and the phosphorylation of ERK, p38 and JNK was substantially down-regulated after Sal treatment. The findings suggested that Sal can suppress the activation of LPS-stimulated PMA-differetiated THP-1 cells, as evidenced by the decreased expression of iNOS, COX2, IL-1β, IL-6 and TNF-α, and the mechanism involves the inhibition of NF-κB activation and the phosphorylation of the MAPK signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science, 2013, 339(6116):166–172

    Article  PubMed  CAS  Google Scholar 

  2. Lewis DH, Chan DL, Pinheiro D, et al. The immunopathology of sepsis: pathogen recognition, systemic inflammation, the compensatory anti-inflammatory response, and regulatory T cells. J Vet Intern Med, 2012,26(3):457–482

    Article  PubMed  CAS  Google Scholar 

  3. Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012,51(Suppl 5):v3–v11

    Article  CAS  Google Scholar 

  4. Vucević D, Radak D, Radosavljević T, et al. Inflammatory process in atherogenesis: new facts about old flame. Arterioscler Thromb Vasc Biol, 2012,65(9-10):388–395

    Google Scholar 

  5. Hursting SD, Hursting MJ. Growth signals, inflammation, and vascular perturbations: mechanistic links between obesity, metabolic syndrome, and cancer. Arterioscler Thromb Vasc Biol, 2012,32(8):1766–1770

    Article  PubMed  CAS  Google Scholar 

  6. Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide, 2011,25(2):125–137

    Article  PubMed  CAS  Google Scholar 

  7. Sautebin L. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia, 2000, 71(Suppl 1):S48–S57

    Article  PubMed  CAS  Google Scholar 

  8. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 2007,15(6):252–259

    Article  PubMed  CAS  Google Scholar 

  9. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol, 2009,27:451–483

    Article  PubMed  CAS  Google Scholar 

  10. Aderem A. Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med, 2001,29(7 Suppl):S16–S18

    Article  PubMed  CAS  Google Scholar 

  11. Dobrovolskaia MA, Vogel SN. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect, 2002,4(9):903–914

    Article  PubMed  CAS  Google Scholar 

  12. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal, 2001,13(2):85–94

    Article  PubMed  CAS  Google Scholar 

  13. Schmid D, Gruber M, Piskaty C, et al. Inhibition of NF-κB-dependent cytokine and inducible nitric oxide synthesis by the macrocyclic ellagitannin oenothein B in TLR-stimulated RAW 264.77 macrophages. J Nat Prod, 2012,75(5):870–875

    Article  PubMed  CAS  Google Scholar 

  14. Chen F, He SS, Qiu RY, et al. Influence of Silencing TRAF6 with shRNA on LPS/TLR4 Signaling in vitro. J Huazhong Univ Sci Technol [Med Sci], 2010,30(3):278–284

    Article  CAS  Google Scholar 

  15. Guo N, Hu Z, Fan X, et al. Simultaneous determination of salidroside and its aglycone metabolite p-tyrosol in rat plasma by liquid chromatography-tandem mass spectrometry. Molecules, 2012,17(4):4733–4754

    Article  PubMed  CAS  Google Scholar 

  16. Guan S, Feng H, Song B, et al. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int Immunopharmacol, 2011,11(12):2194–2199

    Article  PubMed  CAS  Google Scholar 

  17. Li D, Fu Y, Zhang W, et al. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm Res, 2013,62(1):9–15

    Article  PubMed  CAS  Google Scholar 

  18. Guan S, Xiong Y, Song B, et al. Protective effects of salidroside from Rhodiola rosea on LPS-induced acute lung injury in mice. Immunopharmacol Immunotoxicol, 2012,34(4):667–672

    Article  PubMed  CAS  Google Scholar 

  19. Kucinskaite A, Briedis V, Savickas A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina (Kaunas) 2004,40:614–619

    Google Scholar 

  20. Mao GX, Wang Y, Qiu Q, et al. Salidroside protects human fibroblast cells from premature senescence induced by H(2)O(2) partly through modulating oxidative status. Mech Ageing Dev, 2010,131(11-12):723–731

    Article  PubMed  CAS  Google Scholar 

  21. Wu YL, Lian LH, Jiang YZ, et al. Hepatoprotective effects of salidroside on fulminant hepatic failure induced by D-galactosamine and lipopolysaccharide in mice. J Pharm Pharmacol, 2009,61(10):1375–1382

    Article  PubMed  CAS  Google Scholar 

  22. Li F, Tang H, Xiao F, et al. Protective effect of salidroside from Rhodiolae Radix on diabetes-induced oxidative stress in mice. Molecules, 2011,16(12):9912–9924

    Article  PubMed  CAS  Google Scholar 

  23. Daigneault M, Preston JA, Marriott HM, et al. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010,5(1):e8668

    Article  PubMed  Google Scholar 

  24. He X, Shu J, Xu L, et al. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-α and IL-1β production in THP-1 cells. Molecules, 2012,17(3):3155–3164

    Article  PubMed  CAS  Google Scholar 

  25. Dilshara MG, Jayasooriya RG, Lee S, et al. Water extract of processed Hydrangea macrophylla (Thunb.) Ser. leaf attenuates the expression of pro-inflammatory mediators by suppressing Akt-mediated NF-κB activation. Environ Toxicol Pharmacol, 2013,35(2):311–319

    Article  PubMed  CAS  Google Scholar 

  26. Connelly L, Palacios-Callender M, Ameixa C, et al. Biphasic regulation of NF-kappa B activity underlies the pro- and anti-inflammatory actions of nitric oxide. J Immunol, 2001,166(6):3873–3781

    PubMed  CAS  Google Scholar 

  27. Cuccurullo C, Fazia ML, Mezzetti A, et al. COX-2 expression in atherosclerosis: the good, the bad or the ugly? Curr Med Chem, 2007,14(15):1595–1605

    Article  PubMed  CAS  Google Scholar 

  28. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001,104(4):487–501

    Article  PubMed  CAS  Google Scholar 

  29. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res, 2010,20(1):24–33

    Article  PubMed  CAS  Google Scholar 

  30. López-Franco O, Suzuki Y, Sanjuán G, Blanco J, et al. Nuclear factor-kappa B inhibitors as potential novel anti-inflammatory agents for the treatment of immune glomerulonephritis. Am J Pathol, 2002,161(4):1497–1505

    Article  PubMed  Google Scholar 

  31. Wang S, Liu Z, Wang L, et al. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol, 2009,6(5):327–334

    Article  PubMed  CAS  Google Scholar 

  32. Corbetta S, Vicentini L, Ferrero S, et al. Activity and function of the nuclear factor kappaB pathway in human parathyroid tumors. Endocr Relat Cancer, 2005,12(4):929–937

    Article  PubMed  CAS  Google Scholar 

  33. Lee AK, Sung SH, Kim YC, et al. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaB alpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol, 2003,139(1):11–20

    Article  PubMed  CAS  Google Scholar 

  34. Marks-Konczalik J, Chu SC, Moss J. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem, 1998, 273(35):22201–22208

    Article  PubMed  CAS  Google Scholar 

  35. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002,298(5600):1911–1912

    Article  PubMed  CAS  Google Scholar 

  36. Dai JN, Zong Y, Zhong LM, et al. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One, 2011,6(7):e21891

    Article  PubMed  CAS  Google Scholar 

  37. Lee MS, Kwon MS, Choi JW, et al. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J Agric Food Chem, 2012,60(36):9120–9129

    Article  PubMed  CAS  Google Scholar 

  38. Cheng YW, Chang CY, Lin KL, et al. Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-kappaB signaling. J Ethnopharmacol, 2008,120(2):264–271

    Article  PubMed  CAS  Google Scholar 

  39. Xie C, Kang J, Ferguson ME, et al. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF-kappaB activation and the MAPK pathway. Mol Nutr Food Res, 2011,55(10),1587–1591

    Article  PubMed  CAS  Google Scholar 

  40. Chu X, Ci X, He J, et al. A novel anti-inflammatory role for ginkgolide B in asthma via inhibition of the ERK/MAPK signaling pathway. Molecules, 2011,16(9):7634–7648

    Article  PubMed  CAS  Google Scholar 

  41. Huang H, Fletcher A, Niu Y, et al. Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflamm Res, 2012,61(12):1329–1338

    Article  PubMed  CAS  Google Scholar 

  42. Fitzgerald ML, Moore KJ, Freeman MW, et al. Lipopolysaccharide induces scavenger receptor A expression in mouse macrophages: a divergent response relative to human THP-1 monocyte/macrophages. J Immunol, 2000, 164(5):2692–2700

    PubMed  CAS  Google Scholar 

  43. Lee CS, Shin YJ, Won C, et al. Simvastatin acts as an inhibitor of interferon gamma-induced cycloxygenase-2 expression in human THP-1 cells, but not in murine RAW264.7 cells. Biocell, 2009,33(2):107–114

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Ning  (宁 琴).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (Nos. 81100282, 81030007, 81171558, 81271808), Program for Changjiang Scholars and Innovative Research Team in University (No. PCSIRT1131), and China Postdoctoral Science Foundation (No. 2013M531700).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Hw., Wu, T., Qi, Jy. et al. Salidroside attenuates LPS-stimulated activation of THP-1 cell-derived macrophages through down-regulation of MAPK/NF-kB signaling pathways. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 463–469 (2013). https://doi.org/10.1007/s11596-013-1143-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1143-6

Key words

Navigation