Skip to main content
Log in

Association of expression of Leucine-rich repeats and immunoglobulin-like domains 2 gene with invasiveness of pituitary adenoma

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The Leucine-rich repeats and immunoglobulin-like domains-2 (LRIG2) gene expression in pituitary adenoma and its correlation with tumor invasiveness were studied. The expression of LRIG2 mRNA and protein in human pituitary adenoma obtained surgically was detected by RT-PCR (39 cases) and immunohistochemical staining (30 cases). It was found that LRIG2 was mostly localized at the nucleus of the pituitary adenoma cells. Its expression was significantly higher in the invasive cases than in the non-invasive cases. LRIG2 protein was positive in 14 cases out of 21 cases of invasive adenoma, but only 2 cases were positive in 9 cases of non-invasive adenoma. The positive expression rate of LRIG2 mRNA was 91.3% in invasive cases (total 23 cases) and 62.5% in non-invasive cases (total 16 cases), respectively. LRIG2 gene is overexpressed in invasive pituitary adenoma. It may play an important role in pituitary adenoma invasiveness and further studies are necessary to elucidate the mechanism under this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto N, Handa H, Yamashita J, et al. Long-term follow-up of large or invasive pituitary adenoma. Surg Neurol, 1986,25(1):49–54

    Article  PubMed  CAS  Google Scholar 

  2. Goel A, Nadkarni T, Muzumdar D, et al. Giant pituitary tumors: a study based on surgical treatment of 118 cases. Surg Neurol, 2004,61(5):436–445

    Article  PubMed  Google Scholar 

  3. Nilsson J, Vallbo C, Guo D, et al. Cloning, characterization, and expression of human LIG1. Biochem Biophys Res Commun, 2001,284(5):1155–1161

    Article  PubMed  CAS  Google Scholar 

  4. Guo D, Holmlund C, Henriksson R, et al. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics, 2004,84(1):157–165

    Article  PubMed  CAS  Google Scholar 

  5. Hedman H, Nilsson J, Guo D, et al. Is LRIG1 a tumor suppressor gene at chromosome 3p14.3? Acta Oncol, 2002,41(4):352–354

    Article  PubMed  CAS  Google Scholar 

  6. Yang WM, Yan ZJ, Ye ZQ, et al. LRIG1, a candidate tumor-suppressor gene in human bladder cancer cell line BIU87. BJU Int, 2006,98(4):898–902

    Article  PubMed  CAS  Google Scholar 

  7. Hedman H, Henriksson R. LRIG inhibitors of growth factor signalling — double-edged swords in human cancer? Eur J Cancer, 2007,43(4):676–682

    Article  PubMed  CAS  Google Scholar 

  8. Wang B, Han L, Chen R, et al. Downregulation of LRIG2 expression by RNA interference inhibits glioblastoma cell (GL15) growth, causes cell cycle redistribution, increases cell apoptosis and enhances cell adhesion and invasion in vitro. Cancer Biol Ther, 2009,8(11):1018–1023

    Article  PubMed  CAS  Google Scholar 

  9. Cai M, Han L, Chen R, et al. Inhibition of LRIG3 gene expression via RNA interference modulates the proliferation, cell cycle, cell apoptosis, adhesion and invasion of glioblastoma cell (GL15). Cancer Lett, 2009,278(1): 104–112

    Article  PubMed  CAS  Google Scholar 

  10. Guo D, Han L, Shu K, et al. Down-regulation of leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) in HP75 pituitary adenoma cell line. J Huazhong Univ Sci Technolog Med Sci, 2007,27(1): 91–94

    Article  PubMed  CAS  Google Scholar 

  11. Scheithauer BW, Kovacs KT, Laws ER Jr, et al. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg, 1986,65(6):733–744

    Article  PubMed  CAS  Google Scholar 

  12. Oruckaptan HH, Senmevsim O, Ozcan OE, et al. Pituitary adenomas: results of 684 surgically treated patients and review of the literature. Surg Neurol, 2000,53(3): 211–219

    Article  PubMed  CAS  Google Scholar 

  13. Onguru O, Scheithauer BW, Kovacs K, et al. Analysis of epidermal growth factor receptor and activated epidermal growth factor receptor expression in pituitary adenomas and carcinomas. Mod Pathol, 2004, 17:772–780

    Article  PubMed  CAS  Google Scholar 

  14. Theodoropoulou M, Arzberger T, Gruebler Y, et al. Expression of epidermal growth factor receptor in neoplastic pituitary cells: evidence for a role in corticotropinoma cells. J Endocrinol, 2004,183(2):385–394

    Article  PubMed  CAS  Google Scholar 

  15. Chaidarun SS, Eggo MC, Sheppard MC, et al. Expression of epidermal growth factor (EGF), its receptor, and related oncoprotein (erbB-2) in human pituitary tumors and response to EGF in vitro. Endocrinology, 1994,135(5): 2012–2021

    Article  PubMed  CAS  Google Scholar 

  16. Musacchio M, Perrimon N. The Drosophila kekkon genes: novel members of both the leucine-rich repeat and immunoglobulin superfamilies expressed in the CNS. Dev Biol, 1996,178(1):63–76

    Article  PubMed  CAS  Google Scholar 

  17. Ghiglione C, Carraway KL 3rd, Amundadottir LT, et al. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell, 1999,96(6):847–856

    Article  PubMed  CAS  Google Scholar 

  18. Guo D, Nilsson J, Haapasalo H, et al. Perinuclear leucine-rich repeats and immunoglobulin-like domain proteins (LRIG1-3) as prognostic indicators in astrocytic tumors. Acta Neuropathol, 2006, 111(3):238–246

    Article  PubMed  CAS  Google Scholar 

  19. Laederich MB, Funes-Duran M, Yen L, et al. The leucinerich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem, 2004, 279(45):47050–47056

    Article  PubMed  CAS  Google Scholar 

  20. Shattuck DL, Miller JK, Laederich M, et al. LRIG1 is a novel negative regulator of the Met receptor and opposes Met and Her2 synergy. Mol Cell Biol, 2007,27(5): 1934–1946.

    Article  PubMed  CAS  Google Scholar 

  21. Ledda F, Bieraugel O, Fard SS, et al. Lrig1 is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF. J Neurosci, 2008,28(1):39–49

    Article  PubMed  CAS  Google Scholar 

  22. Hedman H, Lindström AK, Tot T, et al. LRIG2 in contrast to LRIG1 predicts poor survival in early-stage squamous cell carcinoma of the uterine cervix. Acta Oncol, 2010,49(6):812–815

    Article  PubMed  Google Scholar 

  23. Holmlund C, Nilsson J, Guo D. Characterization and tissue-specific expression of human LRIG2. Gene, 2004, 33(2):35–43

    Article  Google Scholar 

  24. Holmlund C, Haapasalo H, Yi W, et al. Cytoplasmic LRIG2 expression is associated with poor oligodendrog lioma patient survival. Neuropathology, 2009,29(3):242–247

    Article  PubMed  Google Scholar 

  25. Eisenstat DD, Gibson SB. RIGging functional outcomes in glioma cells: new insights into LRIG proteins in malignant gliomas. Cancer Biol Ther, 2009,8(11):1024–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Guo  (郭东升).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Yan, Q., Xu, S. et al. Association of expression of Leucine-rich repeats and immunoglobulin-like domains 2 gene with invasiveness of pituitary adenoma. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 520–523 (2011). https://doi.org/10.1007/s11596-011-0483-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0483-3

Key words

Navigation