Skip to main content
Log in

Contribution of decreased expression of Ku70 to enhanced radiosensitivity by sodium butyrate in glioblastoma cell line (U251)

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The present study investigated the enhanced radiosensitivity of U-251 cells induced by sodium butyrate (NaB) and its possible mechanisms. Increased radiosensitivity of U251 cells was examined by clonogenic cell survival assays. The expression of Ku70 mRNA and protein was detected by using RT-PCR and Western blotting respectively. γ-H2AX foci were measured at different time points after ionizing irradiation alone or combined with NaB treatment. The results showed that cell survival rate was significantly reduced, both D0 and Dq values were decreased (D0: 1.43 Gy vs. 1.76 Gy; Dq: 1.22 Gy vs. 2.05 Gy) after the combined treatment as compared with irradiation alone, and sensitivity enhancing ratio (SER) reached 1.23. The average number of γ-H2AX foci per cell receiving the combined treatment was significantly increased at different time points, and the expression levels of Ku70 mRNA and protein were suppressed by NaB in a dose-dependent manner. It was concluded that enhanced radiosensitivity induced by NaB involves an inhibited expression of Ku70 and an increase in γ-H2AX foci, which suggests decreased ability in DSB repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin, 2010,60(3): 166–193

    Article  PubMed  Google Scholar 

  2. Munshi A, Tanaka T, Hobbs ML, et al. Vorinostat, a his-tone deacetylase inhibitor, enhances the response of hu-man tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Mol Cancer Ther, 2006,5(8):1967–1974

    Article  PubMed  CAS  Google Scholar 

  3. Geng L, Cuneo KC, Fu A, et al. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cyto-plasm in irradiated non-small cell lung cancer. Cancer Res, 2006,66(23):11298–11304

    Article  PubMed  CAS  Google Scholar 

  4. Kwon HK, Ahn SH, Park SH, et al. A novel gamma-lactam-based histone deacetylase inhibitor potently inhibits the growth of human breast and renal cancer cells. Biol Pharm Bull, 2009,32(10):1723–1727

    Article  PubMed  CAS  Google Scholar 

  5. Entin-Meer M, Yang X, VandenBerg SR, et al. In vivo efficacy of a novel histone deacetylase inhibitor in com-bination with radiation for the treatment of gliomas. Neuro Oncol, 2007,9(2):82–88

    Article  PubMed  CAS  Google Scholar 

  6. Abbas A, Gupta S. The role of histone deacetylases in prostate cancer. Epigenetics, 2008,3(6):300–309

    Article  PubMed  Google Scholar 

  7. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature, 1997,389(6649):349–352

    Article  PubMed  CAS  Google Scholar 

  8. Struhl K. Histone acetylation and transcriptional regula-tory mechanisms. Genes Dev, 1998,12(5):599–606

    Article  PubMed  CAS  Google Scholar 

  9. Kim YB, Ki SW, Yoshida M, et al. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo), 2000,53(10): 1191–1200

    CAS  Google Scholar 

  10. Mai A, Massa S, Rotili D, et al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev, 2005,25(3):261–309

    Article  PubMed  CAS  Google Scholar 

  11. Gibson PR. The intracellular target of butyrate’s actions: HDAC or HDON’T? Gut, 2000,46(4):447–448

    Article  PubMed  CAS  Google Scholar 

  12. Munshi A, Kurland JF, Nishikawa T, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res, 2005,11(13):4912–4922

    Article  PubMed  CAS  Google Scholar 

  13. Arundel CM, Glicksman AS, Leith JT. Enhancement of radiation injury in human colon tumor cells by the matu-rational agent sodium butyrate (NaB). Radiat Res, 1985,104(3):443–448

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez-Capetillo O, Chen HT, Celeste A, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 2002,4(12):993–997

    Article  PubMed  CAS  Google Scholar 

  15. Russo AL, Kwon HC, Burgan WE, et al. In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-ribose) polymerase inhibitor E7016. Clin Cancer Res, 2009,15(2):607–612

    Article  PubMed  CAS  Google Scholar 

  16. Joachimiak R, Kaznica A, Drewa T. Influence of sodium butyrate on hepatocellular carcinoma (hepG2) and glioblastoma (C6) cell lines in vitro. Acta Pol Pharm, 2007,64(6):561–563

    PubMed  CAS  Google Scholar 

  17. Louis M, Rosato RR, Brault L, et al. The histone deace-tylase inhibitor sodium butyrate induces breast cancer cell apoptosis through diverse cytotoxic actions including glutathione depletion and oxidative stress. Int J Oncol, 2004,25(6):1701–1711

    PubMed  CAS  Google Scholar 

  18. Wang L, Luo HS, Xia H. Sodium butyrate induces human colon carcinoma HT-29 cell apoptosis through a mito-chondrial pathway. J Int Med Res, 2009,37(3): 803–811

    PubMed  CAS  Google Scholar 

  19. Litvak DA, Hwang KO, Evers BM, et al. Induction of apoptosis in human gastric cancer by sodium butyrate. Anticancer Res, 2000,20(2A):779–784

    PubMed  CAS  Google Scholar 

  20. Toyooka T, Ibuki Y. Histone deacetylase inhibitor sodium butyrate enhances the cell killing effect of psoralen plus UVA by attenuating nucleotide excision repair. Cancer Res, 2009,69(8):3492–3500

    Article  PubMed  CAS  Google Scholar 

  21. Wei ZL, Zhao QL, Yu DY, et al. Enhancement of sodium butyrate-induced cell death and apoptosis by X-irradiation in the human colorectal cancer cell line HCT 116. Oncol Rep, 2008,20(2):397–403

    PubMed  CAS  Google Scholar 

  22. Adimoolam S, Sirisawad M, Chen J, et al. HDAC inhibi-tor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A, 2007,104(49):19482–19487

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Carr T, Dimtchev A, et al. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression. Radiat Res, 2007,168(1):115–124

    Article  PubMed  CAS  Google Scholar 

  24. Zhang F, Zhang T, Teng ZH, et al. Sensitization to gamma-irradiation-induced cell cycle arrest and apoptosis by the histone deacetylase inhibitor trichostatin A in non-small cell lung cancer (NSCLC) cells. Cancer Biol Ther, 2009,8(9):823–831

    Article  PubMed  CAS  Google Scholar 

  25. Marks PA, Richon VM, Breslow R, et al. Histone deace-tylase inhibitors as new cancer drugs. Curr Opin Oncol, 2001,13(6):477–483

    Article  PubMed  CAS  Google Scholar 

  26. Chen JS, Faller DV. Histone deacetylase inhibition-mediated post-translational elevation of p27KIP1 protein levels is required for G1 arrest in fibroblasts. J Cell Physiol, 2005,202(1):87–99

    Article  PubMed  CAS  Google Scholar 

  27. Banuelos CA, Banath JP, MacPhail SH, et al. Radiosensitization by the histone deacetylase inhibitor PCI-24781. Clin Cancer Res, 2007,13(22Pt1):6816–6826

    Article  PubMed  CAS  Google Scholar 

  28. Frew AJ, Johnstone RW, Bolden JE. Enhancing the apop-totic and therapeutic effects of HDAC inhibitors. Cancer Lett, 2009,280(2):125–133

    Article  PubMed  CAS  Google Scholar 

  29. Olive PL. The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res, 1998,150(5 Suppl):S42–51

    Article  PubMed  CAS  Google Scholar 

  30. Komuro Y, Watanabe T, Hosoi Y, et al. The expression pattern of Ku correlates with tumor radiosensitivity and disease free survival in patients with rectal carcinoma. Cancer, 2002,95(6):1199–1205

    Article  PubMed  Google Scholar 

  31. Wilson CR, Davidson SE, Margison GP, et al. Expression of Ku70 correlates with survival in carcinoma of the cer-vix. Br J Cancer, 2000,83(12):1702–1706

    Article  PubMed  CAS  Google Scholar 

  32. Zhao HJ, Hosoi Y, Miyachi H, et al. DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin Cancer Res, 2000,6(3):1073–1078

    PubMed  CAS  Google Scholar 

  33. Vaganay-Juery S, Muller C, Marangoni E, et al. De-creased DNA-PK activity in human cancer cells exhibiting hypersensitivity to low-dose irradiation. Br J Cancer, 2000,83(4):514–518

    Article  PubMed  CAS  Google Scholar 

  34. Omori S, Takiguchi Y, Suda A, et al. Suppression of a DNA double-strand break repair gene, Ku70, increases radio- and chemosensitivity in a human lung carcinoma cell line. DNA Repair (Amst), 2002,1(4):299–310

    Article  CAS  Google Scholar 

  35. Podhorecka M. Gamma H2AX in the recognition of DNA double-strand breaks. Postepy Hig Med Dosw (Online), 2009,63:92–98

    Google Scholar 

  36. Sedelnikova OA, Rogakou EP, Panyutin IG, et al. Quan-titative detection of (125)IdU-induced DNA dou-ble-strand breaks with gamma-H2AX antibody. Radiat Res, 2002,158(4):486–492

    Article  PubMed  CAS  Google Scholar 

  37. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA, 2003,100(9): 5057–5062

    Article  PubMed  CAS  Google Scholar 

  38. Banath JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res, 2004,64(19):7144–7149

    Article  PubMed  CAS  Google Scholar 

  39. MacPhail SH, Banath JP, Yu TY, et al. Expression of phosphorylated histone H2AX in cultured cell lines fol-lowing exposure to X-rays. Int J Radiat Biol, 2003,79(5):351–358

    Article  PubMed  CAS  Google Scholar 

  40. Svetlova MP, Solovjeva LV, Tomilin NV. Mechanism of elimination of phosphorylated histone H2AX from chro-matin after repair of DNA double-strand breaks. Mutat Res, 2010,685(1–2):54–60

    PubMed  CAS  Google Scholar 

  41. Kuribayashi T, Ohara M, Sora S, et al. Scriptaid, a novel histone deacetylase inhibitor, enhances the response of human tumor cells to radiation. Int J Mol Med, 2010,25(1):25–29

    PubMed  CAS  Google Scholar 

  42. Kim IA, Kim IH, Kim HJ, et al. HDAC inhibi-tor-mediated radiosensitization in human carcinoma cells: a general phenomenon? J Radiat Res (Tokyo), 2010,51(3):257–263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunyu Yang  (杨坤禹).

Additional information

Both authors contributed equally to this work.

This project was supported by a grant from National Natural Sciences Foundation of China (No. 30870739).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhou, H., Xing, E. et al. Contribution of decreased expression of Ku70 to enhanced radiosensitivity by sodium butyrate in glioblastoma cell line (U251). J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 359–364 (2011). https://doi.org/10.1007/s11596-011-0381-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0381-8

Key words

Navigation