Skip to main content
Log in

Influence of β-catenin small interfering RNA on human osteosarcoma cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study examined the effect of small interfering RNA-mediated β-catenin knockdown on the survival, invasion and chemosensitivity of human osteosarcoma cells (U2-OS cells). The siRNA against β-catenin was constructed and transfected into U2-OS cells. The expression of β-catenin was detected by qRT-PCR and Western blotting. Cell growth and apoptosis was detected in the presence or absence of doxorubicin by MTT and flow cytometry, respectively. Cell invasion ability was measured by transwell assay. The results showed that the transfection of β-catenin siRNA resulted in decreased expression of β-catenin, suppression of invasion and motility of U2-OS cells, reduced chemosensitivity to doxorubicin in vitro, and little change in cell growth and apoptosis. Additionally, down-regulated MT1-MMP expression was found after transfection. It was concluded that knockdown of β-catenin gene may decrease the invasive ability of human osteosarcoma cells through down-regulated MT1-MMP expression, and the chemosensitivity of osteosarcoma cells against doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broadhead ML, Clark JC, Choong PF, et al. Making gene therapy for osteosarcoma a reality. Expert Rev Anticancer Ther, 2010,10(4):477–480

    Article  PubMed  CAS  Google Scholar 

  2. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science, 2000,287(5458):1606–1609

    Article  PubMed  CAS  Google Scholar 

  3. Hoang BH, Kubo T, Healey JH, et al. Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cance, 2004,109(1):106–111

    Article  CAS  Google Scholar 

  4. Guo Y, Rubin EM, Xie J, et al. Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res, 2008,466(9):2039–2045

    Article  PubMed  Google Scholar 

  5. Guo Y, Zi X, Koontz Z, et al. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res, 2007,25(7):964–971

    Article  PubMed  CAS  Google Scholar 

  6. Haydon RC, Deyrup A, Ishikawa A, et al. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer, 2002,102(4):338–342

    Article  PubMed  CAS  Google Scholar 

  7. Yang F, Zeng Q, Yu G, et al. Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal, 2006,18(5): 679–687

    Article  PubMed  CAS  Google Scholar 

  8. Iwaya K, Ogawa H, Kuroda M, et al. Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis. Clin Exp Metastasis, 2003,20(9): 525–529

    Article  PubMed  CAS  Google Scholar 

  9. Iwoa K, Miyoshi Y, Nawa G, et al. Frequent beta-catenin abnormalities in bone and soft-tissue tumors. Jpn J Cancer Res, 1999,90(2):205–209

    Google Scholar 

  10. Cai Y, Mohseny AB, Karperien M, et al. Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma. J Pathol, 2010,220(1):24–33

    Article  PubMed  CAS  Google Scholar 

  11. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004,22(3):326–330

    Article  PubMed  CAS  Google Scholar 

  12. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer, 2002,34(3):255–268

    Article  PubMed  CAS  Google Scholar 

  13. Polakis P. Wnt signaling and cancer. Genes Dev, 2000,14(15):1837–1851

    PubMed  CAS  Google Scholar 

  14. Verma UN, Surabhi RM, Schmaltieg A, et al. Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clin Cancer Res, 2003,9(4):1291–300

    PubMed  CAS  Google Scholar 

  15. Zeng G, Apte U, Cieply B, et al. siRNA-mediated beta-catenin knockdown in human hepatoma cells results in decreased growth and survival. Neoplasia, 2007,9(11):951–959

    Article  PubMed  CAS  Google Scholar 

  16. Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther, 2009,16(4):351–361

    Article  PubMed  CAS  Google Scholar 

  17. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nature Rev Cancer, 2008,8(5): 387–398

    Article  CAS  Google Scholar 

  18. Chen K, Fallen S, Abaan HO, et al. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer, 2008,51(3):349–355

    Article  PubMed  CAS  Google Scholar 

  19. Hoang BH, Kubo T, Healey JH, et al. Dickkopf 3 inhibits invasion and motility of saos-2 osteosarcoma cells by modulating the wnt-beta-catenin pathway. Cancer Res, 2004,64(8):2734–2739

    Article  PubMed  CAS  Google Scholar 

  20. Seiki M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett, 2003,194(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  21. Zucker S, Pei D, Cao J, et al. Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol, 2003,54:1–74

    Article  PubMed  CAS  Google Scholar 

  22. Daino K, Ugolin N, Altmeyer-Morel S, et al. Gene expression profiling of alpha-radiation-induced rat osteosarcomas: identification of dysregulated genes involved in radiationinduced tumorigenesis of bone. Int J Cancer, 2009,125(3):612–620

    Article  PubMed  CAS  Google Scholar 

  23. Leow PC, Tian Q, Ong ZY, et al. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest New Drugs, 2010,28(6):766–782

    Article  PubMed  CAS  Google Scholar 

  24. Kansara M, Tsang M, Kodjabachian L, et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest, 2009,119(4): 837–851

    Article  PubMed  CAS  Google Scholar 

  25. Thomas DM. Wnts, bone and cancer. J Pathol, 2010,220(1):1–4

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Chen  (陈安民).

Additional information

This project is supported by a grant from the Major State Basic Research Development Program of China (973 Program) (No. 2002CB513100).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Chen, A., Chen, J. et al. Influence of β-catenin small interfering RNA on human osteosarcoma cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 353–358 (2011). https://doi.org/10.1007/s11596-011-0380-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0380-9

Key words

Navigation