Skip to main content
Log in

Cellular oxidative damage of HEK293T cells induced by combination of CdCl2 and Nano-TiO2

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study investigated the conjoined cellular oxidative damage of human embryo kidney 293T (HEK293T) cells induced by cadmium chloride (CdCl2) and nanometer titanium dioxide (nano-TiO2). RT-PCR technique was used to detect the expressions of Heme oxygenase-1 (HO-1) and 8-oxoguanine DNA glycosylase (OGG1). The activities of superoxide dismutase (SOD) and catalase enzyme (CAT) and concentrations of reactive oxygen species (ROS) and maldondialdehyde (MDA) were measured by different approaches. The results showed that CdCl2 and nano-TiO2 at a low concentration of 0.75 total toxic unit (TU) exerted an additive effects on HO-1 gene expression, CAT activities and MDA concentrations. When the total TU was increased to 1 or 1.25 TU, the interaction was synergetic. Moreover, the mixture with high proportion of CdCl2 produced an additive effect on the OGG1 gene expression, and the interaction was changed to be synergetic when the concentration of CdCl2 was lower than or equal to that of nano-TiO2. Synergetic effects of CdCl2 and nano-TiO2 on cellular oxidative damage of HEK293T cells were found as indicated by the changes in the SOD activities and ROS concentrations. It was concluded that CdCl2 and nano-TiO2 exerts synergistic effects on the cellular oxidative damage of HEK293T cells, and the sensitivity of these indicators of oxidative damage varies with the proportion of CdCl2 and nano-TiO2 in the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IARC. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Working Group views and expert opinions, Lyon, 9–16 February 1993. IARC Monogr Eval Carcinog Risks Hum, 1993,58:1–415

    Google Scholar 

  2. Shaikh ZA, Vu TT, Zaman K. Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol, 1999,154(3):256–263

    Article  PubMed  CAS  Google Scholar 

  3. Banfalvi G, Littlefield N, Hass B, et al. Effect of cadmium on the relationship between replicative and repair DNA synthesis in synchronized CHO cells. Eur J Biochem, 2000,267(22):6580–6585

    Article  PubMed  CAS  Google Scholar 

  4. Casalino E, Sblano C, Calzaretti G, et al. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver. Toxicology, 2006,217(2-3):240–245

    Article  PubMed  CAS  Google Scholar 

  5. Ikediobi CO, Badisa VL, Ayuk-Takem LT, et al. Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med, 2004,14(1):87–92

    PubMed  CAS  Google Scholar 

  6. Karmakar R, Banerjee A, Datta S, et al. Influence of cadmium intoxication on hepatic lipid peroxidation, glutathione level, and glutathione S-transferase and gamma-glutamyl transpeptidase activities: correlation with chromosome aberrations in bone marrow cells. J Environ Pathol Toxicol Oncol, 1999,18(4):277–287

    PubMed  CAS  Google Scholar 

  7. Koizumi T, Shirakura H, Kumagai H, et al. Mechanism of cadmium-induced cytotoxicity in rat hepatocytes: cadmium-induced active oxygen-related permeability changes of the plasma membrane. Toxicology, 1996,114(2):125–134

    Article  PubMed  CAS  Google Scholar 

  8. Mikhailova MV, Littlefield NA, Hass BS, et al. Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett, 1997,115(2):141–148

    Article  PubMed  CAS  Google Scholar 

  9. Yano CL, Marcondes MC. Cadmium chloride-induced oxidative stress in skeletal muscle cells in vitro. Free Radic Biol Med, 2005,39(10):1378–1384

    Article  PubMed  CAS  Google Scholar 

  10. Lin C, Lin KS. Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 2007, 66(10): 1872–1877

    Article  PubMed  CAS  Google Scholar 

  11. Quan X, Zhao X, Chen S, et al. Enhancement of p,p′-DDT photodegradation on soil surfaces using TiO2 induced by UV-light. Chemosphere, 2005,60(2):266–273

    Article  PubMed  CAS  Google Scholar 

  12. Gurr JR, Wang AS, Chen CH, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 2005,213(1–2):66–73

    Article  PubMed  CAS  Google Scholar 

  13. Karlsson HL, Cronholm P, Gustafsson J, et al. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol, 2008,21(9):1726–1732

    Article  PubMed  CAS  Google Scholar 

  14. Rahman Q, Lohani M, Dopp E, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect, 2002,110(8):797–800

    Article  PubMed  CAS  Google Scholar 

  15. Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci, 2006,92(1):174–185

    Article  PubMed  CAS  Google Scholar 

  16. Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radic Biol Med, 1997,23(6):851–858

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Zhou G, Chen C, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett, 2007,168(2):176–185

    Article  PubMed  CAS  Google Scholar 

  18. Gallego A, Martin-Gonzalez A, Ortega R, et al. Flow cytometry assessment of cytotoxicity and reactive oxygen species generation by single and binary mixtures of cadmium, zinc and copper on populations of the ciliated protozoan Tetrahymena thermophila. Chemosphere, 2007,68(4):647–661

    Article  PubMed  CAS  Google Scholar 

  19. Bertin G, Averbeck D. Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie, 2006,88(11):1549–1559

    Article  PubMed  CAS  Google Scholar 

  20. Li N, Sioutas C, Cho A, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect, 2003,111(4):455–460

    Article  PubMed  CAS  Google Scholar 

  21. Afaq F, Abidi P, Matin R, et al. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide. J Appl Toxicol, 1998,18(5):307–312

    Article  PubMed  CAS  Google Scholar 

  22. Hussain SM, Hess KL, Gearhart JM, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro, 2005,19(7):975–983

    Article  PubMed  CAS  Google Scholar 

  23. Jin CY, Zhu BS, Wang XF, et al. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol, 2008,21(9):1871–1877

    Article  PubMed  CAS  Google Scholar 

  24. Long TC, Saleh N, Tilton RD, et al. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol, 2006,40(14):4346–4352

    Article  PubMed  CAS  Google Scholar 

  25. Long TC, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect, 2007,115(11):1631–1637

    Article  PubMed  CAS  Google Scholar 

  26. Peters K, Unger RE, Kirkpatrick CJ, et al. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med, 2004,15(4):321–325

    Article  PubMed  CAS  Google Scholar 

  27. Chen G, Zhao J, Liu X, et al. Electrochemical sensing DNA damage with nano-titanium dioxide and repair with a medicinal herb species resveratrol. J Biotechnol, 2007,127(4):653–656

    Article  PubMed  CAS  Google Scholar 

  28. Llesuy SF, Tomaro ML. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta, 1994,1223(1):9–14

    CAS  Google Scholar 

  29. Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci USA, 1997,94(20):10919–10924

    Article  PubMed  CAS  Google Scholar 

  30. Suttner DM, Sridhar K, Lee CS, et al. Protective effects of transient HO-1 overexpression on susceptibility to oxygen toxicity in lung cells. Am J Physiol, 1999,276(3 Pt 1):L443–451

    PubMed  CAS  Google Scholar 

  31. Gabelova A, Valovicova Z, Labaj J, et al. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10). Mutat Res, 2007,620(1-2):135–144

    PubMed  CAS  Google Scholar 

  32. Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett, 2006,6(8):1794–1807

    Article  PubMed  CAS  Google Scholar 

  33. Shinmura K, Kasai H, Sasaki A, et al. 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) DNA glycosylase and AP lyase activities of hOGG1 protein and their substrate specificity. Mutat Res, 1997,385(1):75–82

    PubMed  CAS  Google Scholar 

  34. Park EJ, Yi J, Chung KH, et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett, 2008,180(3): 222–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikai Zhou  (周宜开).

Additional information

This work was among the National Investigation Projects of Soil Pollution supported by a grant from Ministry of Environmental Protection of the People’s Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, B., Chen, J. & Zhou, Y. Cellular oxidative damage of HEK293T cells induced by combination of CdCl2 and Nano-TiO2 . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 31, 290–294 (2011). https://doi.org/10.1007/s11596-011-0369-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-011-0369-4

Key words

Navigation