Skip to main content
Log in

Rapamycin modulates the maturation of rat bone marrow-derived dendritic cells

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The purpose of the study was to observe the effect of rapamycin (RAPA) on the differentiation and maturation of rat bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs from Wistar rats were cultured with granulocyte-macrophage colony-stimulating factor plus interleukin-4 in the presence or absence of RAPA (20 ng/mL), and stimulated with lipopolysaccharide (LPS) for 24 h before cells and supernatants were collected. Surface phenotype of BMDCs was flow-cytometrically detected to determine the expression of maturation markers, MHC class II and CD86. Supernatants were analyzed for the production of IL-12 and IFN-γ cytokines by using ELISA. BMDCs were co-cultured with T cells from Lewis rats and mixed lymphocyte reaction was assessed by MTT method. The morphology of BMDCs stimulated with LPS remained immature after RAPA pretreatment. RAPA significantly decreased the CD86 expression, impaired the IL-12 and IFN-γ production of BMDCs stimulated with LPS, and inhibited the proliferation of allogeneic T cells. In conclusion, RAPA can inhibit the maturation of BMDCs stimulated with LPS in terms of the morphology, surface phenotype, cytokine production, and ability of BMDCs to stimulate the proliferation of allogeneic T cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banchereau J, Briere F, Caux C et al. Immunobiology of dendritic cells. Annu Rev Immunol, 2000,18:767–811

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau J, Steinman R M. Dendritic cells and the control of immunity. Nature, 1998,392:245–252

    Article  PubMed  CAS  Google Scholar 

  3. Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol, 2006,6(6):476–483

    Article  PubMed  CAS  Google Scholar 

  4. Steinman R M, Hawiger D, Nussenzweig M C. Tolerogenic dendritic cells. Annu Rev Immunol, 2003,21: 685–711

    Article  PubMed  CAS  Google Scholar 

  5. Jonuleit H, Schmitt E, Schuler G et al. Induction of interleukin 10-producing, non-proliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med, 2000,192:1213–1222

    Article  PubMed  CAS  Google Scholar 

  6. Fu F, Li Y, Qian S et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation, 1996,62:659–665

    Article  PubMed  CAS  Google Scholar 

  7. Dhodapkar M V, Steinman R M, Krasovsky J, et al. Antigen-specific inhibition of effector T cell in humans after injection of immature dendritic cells. J Exp Med, 2001,193:233–238

    Article  PubMed  CAS  Google Scholar 

  8. Saunders R N, Metcalfe M S, Nicholson M L et al. Rapamycin in transplantation: a review of the evidence. Kidney Int, 2001,59:3–16

    Article  PubMed  CAS  Google Scholar 

  9. Chan M, Pearson G J. New advances in antirejection therapy. Curr Opin Cardiol, 2007,22(2):117–122

    Article  PubMed  Google Scholar 

  10. Sigal N H, Dumont F J. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu Rev Immunol, 1992,10:519–560

    PubMed  CAS  Google Scholar 

  11. Mariotti J, Foley J, Jung U et al. Ex vivo rapamycin generates apoptosis-resistant donor Th2 cells that persist in vivo and prevent hemopoietic stem cell graft rejection. J Immunol, 2008,180(1):89–105

    PubMed  CAS  Google Scholar 

  12. Horibe E K, Sacks J, Unadkat J et al. Rapamycin-conditioned, alloantigen-pulsed dendritic cells promote indefinite survival of vascularized skin allografts in association with T regulatory cell expansion. Transpl Immunol, 2008,18(4):307–318

    Article  PubMed  CAS  Google Scholar 

  13. Bertagnolli M M, Yang L, Herrmann S H et al. Evidence that rapamycin inhibits interlerukin-12-induced proliferation of activated T lymphocytes. Transplantation, 1994,58:1091–1096

    Article  PubMed  CAS  Google Scholar 

  14. Aaguaard-Tillery K M and Jelinek D F. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol, 1994,156:493–507

    Article  Google Scholar 

  15. Matsue H, Yang C, Matsue K et al. Contrasting impacts of immunosuppressive agents (rapamycin, FK506, cyclosporin A, and dexamethasone) on bidirectional dendritic cell-T cell interaction during antigen presentation. J Immunol, 2002,169:3555–3564

    PubMed  CAS  Google Scholar 

  16. Chiang P H, Wang L, Bonham C A et al. Mechanistic insights into impaired dendritic cell function by rapamycin: Inhibition of Jak2/Stat4 signaling pathway. J Immunol, 2004,172:1355–1363

    PubMed  CAS  Google Scholar 

  17. Hackstein H, Taner T, Zahorchak A F et al. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood, 2003,101:4457–4463

    Article  PubMed  CAS  Google Scholar 

  18. Woltman A M, de Fijter J W, Kamerling S W et al. Rapamycin induces apoptosis in monocyte-and CD34-derived dendritic cells but not in monocytes and macrophages. Blood, 2001,98:174–180

    Article  PubMed  CAS  Google Scholar 

  19. Monti P, Mercalli A, Leone B E et al. Rapamycin impairs antigen uptake of human dendritic cells. Transplantation, 2003,75:137–145

    Article  PubMed  CAS  Google Scholar 

  20. Taner T, Hackstein H, Wang Z et al. Rapamycin-treated, alloantigen-pulsed host dendritic cells induce ag-specific T cell regulation and prolong graft survival. Am J Transplant, 2005,5:228–236

    Article  PubMed  CAS  Google Scholar 

  21. Murphy K M, Ouyang W, Farrar J D et al. Signaling and transcription in T helper development. Annu Rev Immunol, 2000,18:451–494

    Article  PubMed  CAS  Google Scholar 

  22. Kishimoto K, Dong V M, Sayegh M H. The role of costimulatory molecules as targets for new immunosuppressive in transplantation. Curr Opini Urol, 2000,10(2): 57–62

    Article  CAS  Google Scholar 

  23. Macatonia S, Hosken N, Litton M et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol, 1995,154:5071–5079

    PubMed  CAS  Google Scholar 

  24. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol, 2003,3(2):133–146

    Article  PubMed  CAS  Google Scholar 

  25. Bianchi R, Grohmann U, Vacca C et al. Autocrine IL-12 is involved in dendritic cell modulation via CD40 ligation. J Immunol, 1999,63:2517–2521

    Google Scholar 

  26. Boehm U, Klamp T, Groot M et al. Cellular responses to interferon-gamma. Annu Rev Immunol, 1997,15:749–795

    Article  PubMed  CAS  Google Scholar 

  27. Watanabe H, Unger M, Tuvel B et al. Contact hypersensitivity: the mechanism of immune responses and T cell balance. J Interferon Cytokine Res, 2002,22(4):407–412

    Article  PubMed  CAS  Google Scholar 

  28. Ohteki T, Fukao T, Suzue K et al. Interleukin 12-dependent interferon-γ production by CD8alpha+ lymphoid dendritic cells. J Exp Med, 1999,189:1981–1986

    Article  PubMed  CAS  Google Scholar 

  29. Walzer T, Dalod M, Vivier E et al. Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin Biol Ther, 2005,5(Suppl 1):S49–S59

    Article  PubMed  CAS  Google Scholar 

  30. Stober D, Schirmbeck R, and Reimann J IL-12/IL-18-dependent IFN-γ release by murine dendritic cells. J Immunol, 2001,167:957–965

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Yingjun DING, male, born in 1979, Resident

Dr. Yingjun DING and Dr. Xiang CHENG contributed equally to the project.

This work was supported by grants from the National Basic Research Program of China (973 Program) (No. 2007CB512000, 2007CB512005) and National Natural Science Foundation of China (No. 30600234).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Cheng, X., Tang, T. et al. Rapamycin modulates the maturation of rat bone marrow-derived dendritic cells. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 28, 391–395 (2008). https://doi.org/10.1007/s11596-008-0405-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-008-0405-1

Key words

Navigation