Skip to main content
Log in

Biotin-modified Galactosylated Chitosan-gene Carrier in Hepatoma Cells Targeting Delivery

  • Biomaterial
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Our previous studies have successfully grafted biotin and galactose onto chitosan (CS) and synthesized biotin modified galactosylated chitosan (Bio-GC). The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1. At this N/P ratio, the transfection efficiency in the hepatoma cells was the highest with a slow release effect. Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation, and can target the transfection into hepatoma cells by combination with galactose and biotin receptors. The transfection rate was inhibited by the competition of galactose and biotin. Bio-GC nanomaterials were imported into cells’ cytoplasm by their receptors, followed by the imported exogenous gene transfected into the cells. Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice, by carrying the gene through the blood to the hepatoma tissue. Taken together, bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation, improving the rate of transfection in hepatoma cells, and transporting the gene into the cytoplasm in vitro and in vivo. Therefore, they are efficient hepatoma-targeting gene carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomanin R, Scarpa M. Why do We Need New Gene Therapy Viral Vectors? Characteristics, limitations and Future Perspectives of Viral Vector Transduction[J]. Curr. Gene Ther., 2004, 4: 357–372

    Article  CAS  PubMed  Google Scholar 

  2. Rybniker J, Nowag A, Janicki H, et al. Incorporation of Antigens into Viral Capsids Augments Immunogenicity of Adeno-associated Virus Vector-based Vaccines[J]. J. Virol., 2012, 86: 13 800–13 804

    Article  CAS  Google Scholar 

  3. Wang HY, Sun YX, Deng JZ, et al. Effect of Peptides and Their Introduction Methods on Target Gene Transfer of Gene Vector Based on Disulfide-containing Polyethyleneimine[J]. Int. J. Pharm., 2012, 438: 191–201

    Article  CAS  PubMed  Google Scholar 

  4. Ma Z, Yang C, Song W, et al. Chitosan Hydrogel as siRNA Vector for Prolonged Gene Silencing[J]. J. Nanobiotechnology, 2014, 12: 23

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhong H, Lei X, Qin L, et al. Augmentation of Adenovirus 5 Vector-mediated Gene Transduction under Physiological pH Conditions by a Chitosan/NaHCO3 Solution[J]. Gene Ther., 2011, 18: 232–239

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Yao J, Zhang L, et al. Synthesis and Characterization of PEG-conjugated Quaternized Chitosan and Its Application as a Gene Vector[J]. Carbohydr. Polym., 2014, 103: 566–572

    Article  CAS  PubMed  Google Scholar 

  7. Sum CH, Wettig S, Slavcev RA. Impact of DNA Vector Topology on Non-viral Gene Therapeutic Safety and Efficacy[J]. Curr. Gene Ther., 2014, 14: 309–329

    Article  CAS  PubMed  Google Scholar 

  8. Vitor MT, Bergami-Santos PC, Barbuto JA, et al. Cationic Liposomes as Non-viral Vector for RNA Delivery in Cancer Immunotherapy[J]. Recent Pat. Drug Deliv. Formul., 2013, 7: 99–110

    Article  CAS  PubMed  Google Scholar 

  9. Peng SF, Tseng MT, Ho YC, et al. Mechanisms of Cellular Uptake and Intracellular Trafficking with Chitosan/DNA/poly(Gamma-glutamic Acid) Complexes as a Gene Delivery Vector[J]. Biomaterials, 2011, 32: 239–248

    Article  CAS  PubMed  Google Scholar 

  10. Wang X, Yao J, Zhou JP, et al. Synthesis and Evaluation of Chitosan-graft-polyethylenimine as a Gene Vector[J]. Pharmazie, 2010, 65(8): 572–579

    CAS  PubMed  Google Scholar 

  11. Klausner EA, Zhang Z, Wong SP, et al. Corneal Gene Delivery: Chitosan Oligomer as a Carrier of CpG Rich, CpG Free or S/MAR Plasmid DNA[J]. J. Gene Med., 2012,14: 100–108

    Article  CAS  PubMed  Google Scholar 

  12. Cadete A, Figueiredo L, Lopes R, et al. Development and Characterization of a New Plasmid Delivery System Based on Chitosan-sodium Deoxycholate Nanoparticles[J]. Eur. J. Pharm. Sci., 2012,45: 451–458

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed TA, Aljaeid BM. Preparation, Characterization, and Potential Application of Chitosan, Chitosan Derivatives, and Chitosan Metal Nanoparticles in Pharmaceutical Drug Delivery[J]. Drug Des. Devel. Ther., 2016, 10: 483–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rizeq BR, Younes NN, Rasool K, et al. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles[J]. Int. J. Mol. Sci., 2019, 20: 5 776

    Article  CAS  Google Scholar 

  15. Cheng M, Han J, Li Q, et al. Synthesis of Galactosylated Chitosan/5-fluorouracil Nanoparticles and Its Characteristics, in vitro and in vivo Release Studies[J]. J. Biomed. Mater. Res. B Appl. Biomater., 2012,100: 2 035–2 043

    Article  Google Scholar 

  16. Yang W, Cheng Y, Xu T, et al. Targeting Cancer Cells with Biotin-dendrimer Conjugates[J]. Eur. J. Med. Chem., 2009, 44: 862–868

    Article  CAS  PubMed  Google Scholar 

  17. Heo DN, Yang DH, Moon HJ, et al. Gold Nanoparticles Surface-functionalized with Paclitaxel Drug and Biotin Receptor as Theranostic Agents for Cancer Therapy[J]. Biomaterials, 2012, 33: 856–866

    Article  CAS  PubMed  Google Scholar 

  18. Cheng M, Ma D, Zhi K, et al. Synthesis of Biotin-Modified Galactosylated Chitosan Nanoparticles and Their Characteristics in Vitro and in Vivo[J]. Cell. Physiol. Biochem., 2018, 50(2): 569–584

    Article  CAS  PubMed  Google Scholar 

  19. Cheng M, Zhi K, Gao X, et al. Activation of Cellular Immunity and Marked Inhibition of Liver Cancer in a Mouse Model Following Gene Therapy and Tumor Expression of GM-SCF, IL-21, and Rae-1[J]. Mol. Cancer, 2013,12: 166

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yan CY, Gu JW, Hou DP, et al. Synthesis of Tat Tagged and Folate Modified N-succinyl-chitosan Self-assembly Nanoparticles as a Novel Gene Vector[J]. Int. J. Biol. Macromol., 2015, 72: 751–756

    Article  CAS  PubMed  Google Scholar 

  21. Cheng M, Chen H, Wang Y, et al. Optimized Synthesis of Glycyrrhetinic Acid-modified Chitosan 5-fluorouracil Nanoparticles and Their Characteristics[J]. Int. J. Nanomedicine, 2014, 9: 695–710

    PubMed  PubMed Central  Google Scholar 

  22. Huang M, Fong CW, Khor E, et al. Transfection Efficiency of Chitosan Vectors: Effect of Polymer Molecular Weight and Degree of Deacetylation[J]. J. Control Release, 2005, 106: 391–406

    Article  CAS  PubMed  Google Scholar 

  23. Romoren K, Pedersen S, Smistad G, et al. The influence of Formulation Variables on in Vitro Transfection Efficiency and Physicochemical Properties of Chitosan-based Polyplexes[J]. Int. J. Pharm., 2003, 261: 115–127

    Article  CAS  PubMed  Google Scholar 

  24. Huang M, Khor E, Lim LY. Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation[J]. Pharm. Res., 2004, 21: 344–353

    Article  CAS  PubMed  Google Scholar 

  25. Zhao QQ, Chen JL, Lv TF, et al. N/P Ratio Significantly Influences the Transfection Efficiency and Cytotoxicity of a Polyethylenimine/Chitosan/DNA Complex[J]. Biol. Pharm. Bull., 2009, 32: 706–710

    Article  CAS  PubMed  Google Scholar 

  26. Cheng M, Li Q, Wan T, et al. Synthesis and Efficient Hepatocyte Targeting of Galactosylated Chitosan as a Gene Carrier in vitro and in vivo[J]. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 99: 70–80

    Article  PubMed  Google Scholar 

  27. Dreher M R, Liu W, Michelich CR, et al. Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers[J]. J. Natl. Cancer Inst., 2006, 98: 335–344

    Article  CAS  PubMed  Google Scholar 

  28. Goren D, Gabizon A, Barenholz Y. The Influence of Physical Characteristics of Liposomes Containing Doxorubicin on Their Pharmacological Behavior[J]. Biochim. Biophys. Acta, 1990, 1029: 285–294

    Article  CAS  PubMed  Google Scholar 

  29. Na DH, Murty SB, Lee KC, et al. Preparation and Stability of Poly(Ethylene Glycol) (PEG)Ylated Octreotide for Application to Microsphere Delivery[J]. AAPS Pharm. Sci. Tech., 2003, 4: E72

    Article  Google Scholar 

  30. Liu W, Sun S, Cao Z, et al. An investigation on the Physicochemical Properties of Chitosan/DNA Polyelectrolyte Complexes[J]. Biomaterials, 2005, 26: 2 705–2 711

    Article  CAS  Google Scholar 

  31. Artursson P, Lindmark T, Davis SS, et al. Effect of Chitosan on the Permeability of Monolayers of Intestinal Epithelial Cells (Caco-2)[J]. Pharm. Res., 1994, 11: 1 358–1 361

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Li  (李清) or Hua Wang  (王华).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the Scientific Research Project of Shanghai Municipal Health Commission (No.201940430)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Zhang, F., Li, Q. et al. Biotin-modified Galactosylated Chitosan-gene Carrier in Hepatoma Cells Targeting Delivery. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 522–531 (2024). https://doi.org/10.1007/s11595-024-2908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2908-4

Key words

Navigation